Suppr超能文献

在生物制药研发中实施和应用 FAIR 数据原则。

Implementation and relevance of FAIR data principles in biopharmaceutical R&D.

机构信息

Pistoia Alliance, USA.

Bayer, Germany.

出版信息

Drug Discov Today. 2019 Apr;24(4):933-938. doi: 10.1016/j.drudis.2019.01.008. Epub 2019 Jan 25.

Abstract

Biopharmaceutical industry R&D, and indeed other life sciences R&D such as biomedical, environmental, agricultural and food production, is becoming increasingly data-driven and can significantly improve its efficiency and effectiveness by implementing the FAIR (findable, accessible, interoperable, reusable) guiding principles for scientific data management and stewardship. By so doing, the plethora of new and powerful analytical tools such as artificial intelligence and machine learning will be able, automatically and at scale, to access the data from which they learn, and on which they thrive. FAIR is a fundamental enabler for digital transformation.

摘要

生物医药研发行业,乃至生物医药、环境、农业和食品生产等其他生命科学研发行业,正日益变得依赖数据。通过实施科学数据管理和治理的 FAIR(可查找、可访问、可互操作、可重用)指导原则,它们能够显著提高效率和效果。这样一来,人工智能和机器学习等大量新型强大分析工具就能够自动、大规模地访问它们从中学习和赖以运行的数据。FAIR 是数字化转型的基本推动因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验