Suppr超能文献

FAIRshake:评估研究数字资源 FAIR 程度的工具包。

FAIRshake: Toolkit to Evaluate the FAIRness of Research Digital Resources.

机构信息

Department of Pharmacological Sciences, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Deloitte Consulting, 1919 N Lynn St., Arlington, VA 22209, USA.

出版信息

Cell Syst. 2019 Nov 27;9(5):417-421. doi: 10.1016/j.cels.2019.09.011. Epub 2019 Oct 30.

Abstract

As more digital resources are produced by the research community, it is becoming increasingly important to harmonize and organize them for synergistic utilization. The findable, accessible, interoperable, and reusable (FAIR) guiding principles have prompted many stakeholders to consider strategies for tackling this challenge. The FAIRshake toolkit was developed to enable the establishment of community-driven FAIR metrics and rubrics paired with manual and automated FAIR assessments. FAIR assessments are visualized as an insignia that can be embedded within digital-resources-hosting websites. Using FAIRshake, a variety of biomedical digital resources were manually and automatically evaluated for their level of FAIRness.

摘要

随着研究界产生的数字资源越来越多,协调和组织这些资源以实现协同利用变得越来越重要。可发现性、可访问性、互操作性和可重用性(FAIR)指导原则促使许多利益相关者考虑解决这一挑战的策略。FAIRshake 工具包旨在使社区驱动的 FAIR 指标和准则的建立与手动和自动 FAIR 评估相结合。FAIR 评估以徽章的形式可视化,可以嵌入在数字资源托管网站中。使用 FAIRshake,对各种生物医学数字资源进行了手动和自动评估,以确定其 FAIR 程度。

相似文献

1
FAIRshake: Toolkit to Evaluate the FAIRness of Research Digital Resources.
Cell Syst. 2019 Nov 27;9(5):417-421. doi: 10.1016/j.cels.2019.09.011. Epub 2019 Oct 30.
3
COVID-19-related research data availability and quality according to the FAIR principles: A meta-research study.
PLoS One. 2024 Nov 18;19(11):e0313991. doi: 10.1371/journal.pone.0313991. eCollection 2024.
4
AutoFAIR-A portal for automating FAIR assessments for bioinformatics resources.
Biochim Biophys Acta Gene Regul Mech. 2022 Jan;1865(1):194767. doi: 10.1016/j.bbagrm.2021.194767. Epub 2021 Nov 6.
6
Moving Toward Findable, Accessible, Interoperable, Reusable Practices in Epidemiologic Research.
Am J Epidemiol. 2023 Jun 2;192(6):995-1005. doi: 10.1093/aje/kwad040.
7
An automated solution for measuring the progress toward FAIR research data.
Patterns (N Y). 2021 Oct 29;2(11):100370. doi: 10.1016/j.patter.2021.100370. eCollection 2021 Nov 12.
8
Community-driven governance of FAIRness assessment: an open issue, an open discussion.
Open Res Eur. 2023 Sep 6;2:146. doi: 10.12688/openreseurope.15364.2. eCollection 2022.
10
FAIR SCI Ahead: The Evolution of the Open Data Commons for Pre-Clinical Spinal Cord Injury Research.
J Neurotrauma. 2020 Mar 15;37(6):831-838. doi: 10.1089/neu.2019.6674. Epub 2019 Dec 6.

引用本文的文献

1
COVID-19-related research data availability and quality according to the FAIR principles: A meta-research study.
PLoS One. 2024 Nov 18;19(11):e0313991. doi: 10.1371/journal.pone.0313991. eCollection 2024.
2
Current state of data stewardship tools in life science.
Front Big Data. 2024 Sep 16;7:1428568. doi: 10.3389/fdata.2024.1428568. eCollection 2024.
3
[FAIR health data in the national and international data space].
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2024 Jun;67(6):710-720. doi: 10.1007/s00103-024-03884-8. Epub 2024 May 15.
4
rworkflows: automating reproducible practices for the R community.
Nat Commun. 2024 Jan 2;15(1):149. doi: 10.1038/s41467-023-44484-5.
5
FAIR EVA: Bringing institutional multidisciplinary repositories into the FAIR picture.
Sci Data. 2023 Nov 4;10(1):764. doi: 10.1038/s41597-023-02652-8.
8
Modeling community standards for metadata as templates makes data FAIR.
Sci Data. 2022 Nov 12;9(1):696. doi: 10.1038/s41597-022-01815-3.
9
One Digital Health for more FAIRness.
Methods Inf Med. 2022 Dec;61(S 02):e116-e124. doi: 10.1055/a-1938-0533. Epub 2022 Sep 7.
10
SigCom LINCS: data and metadata search engine for a million gene expression signatures.
Nucleic Acids Res. 2022 Jul 5;50(W1):W697-W709. doi: 10.1093/nar/gkac328.

本文引用的文献

1
Evaluating FAIR maturity through a scalable, automated, community-governed framework.
Sci Data. 2019 Sep 20;6(1):174. doi: 10.1038/s41597-019-0184-5.
2
FAIRsharing as a community approach to standards, repositories and policies.
Nat Biotechnol. 2019 Apr;37(4):358-367. doi: 10.1038/s41587-019-0080-8.
3
Implementation and relevance of FAIR data principles in biopharmaceutical R&D.
Drug Discov Today. 2019 Apr;24(4):933-938. doi: 10.1016/j.drudis.2019.01.008. Epub 2019 Jan 25.
4
A design framework and exemplar metrics for FAIRness.
Sci Data. 2018 Jun 26;5:180118. doi: 10.1038/sdata.2018.118.
5
The FAIR Guiding Principles for scientific data management and stewardship.
Sci Data. 2016 Mar 15;3:160018. doi: 10.1038/sdata.2016.18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验