Brahim Amalina, Mustapha Nurshahida, Marshall David J
Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei.
Front Physiol. 2019 Jan 14;9:1909. doi: 10.3389/fphys.2018.01909. eCollection 2018.
The theory for thermal plasticity of tropical ectotherms has centered on terrestrial and open-water marine animals which experience reduced variation in diurnal and seasonal temperatures, conditions constraining plasticity selection. Tropical marine intertidal animals, however, experience complex habitat thermal heterogeneity, circumstances encouraging thermal plasticity selection. Using the tropical rocky-intertidal gastropod, , we investigated heat tolerance plasticity in terms of laboratory acclimation and natural acclimatization of populations from thermally-dissimilar nearby shorelines. Laboratory treatments yielded similar capacities of snails from either population to acclimate their lethal thermal limit (LT variation was ∼2°C). However, the populations differed in the temperature range over which acclimatory adjustments could be made; LT plasticity occurred over a higher temperature range in the warm-shore snails compared to the cool-shore snails, giving an overall acclimation capacity for the populations combined of 2.9°C. In addition to confirming significant heat tolerance plasticity in tropical intertidal animals, these findings reveal two plasticity forms, reversible (laboratory acclimation) and non-reversible (population or shoreline specific) plasticity. The plasticity forms should account for different spatiotemporal scales of the environmental temperature variation; reversible plasticity for daily and tidal variations in microhabitat temperature and non-reversible plasticity for lifelong, shoreline temperature conditions. Non-reversible heat tolerance plasticity, likely established after larvae settle on the shore, should be energetically beneficial in preventing heat shock protein overexpression, but also should facilitate widespread colonization of coasts that support thermally-diverse shorelines. This first demonstration of different plasticity forms in benthic intertidal animals supports the hypothesis that habitat heterogeneity (irrespective of latitude) drives thermal plasticity selection. It further suggests that studies not making reference to different spatial scales of thermal heterogeneity, nor seeking how these may drive different thermal plasticity forms, risk misinterpreting ectothermic responses to environmental warming.
热带变温动物的热可塑性理论主要围绕陆地和开阔水域的海洋动物展开,这些动物经历的昼夜和季节温度变化较小,这种条件限制了可塑性的选择。然而,热带海洋潮间带动物经历着复杂的栖息地热异质性,这种情况有利于热可塑性的选择。我们以热带岩石潮间带腹足纲动物 为研究对象,从热环境不同的附近海岸线采集种群,通过实验室驯化和自然驯化来研究其耐热可塑性。实验室处理结果显示,两个种群的蜗牛在驯化其致死温度极限方面具有相似的能力(致死温度变化约为2°C)。然而,两个种群在可进行驯化调整的温度范围上存在差异;与冷岸蜗牛相比,暖岸蜗牛的致死温度可塑性发生在更高的温度范围内,两个种群的总体驯化能力为2.9°C。这些发现除了证实热带潮间带动物具有显著的耐热可塑性外,还揭示了两种可塑性形式,即可逆性(实验室驯化)和不可逆性(种群或海岸线特异性)可塑性。这两种可塑性形式应对应环境温度变化的不同时空尺度;可逆性可塑性对应微生境温度的每日和潮汐变化,不可逆性可塑性对应终生的海岸线温度条件。不可逆的耐热可塑性可能在幼虫在海岸定居后形成,这在能量方面有利于防止热休克蛋白过度表达,也应有助于支持热环境多样的海岸线的海岸的广泛殖民化。在底栖潮间带动物中首次证明不同的可塑性形式支持了这样一种假设,即栖息地异质性(无论纬度如何)驱动热可塑性的选择。这进一步表明,那些没有考虑热异质性不同空间尺度,也没有探究这些尺度如何驱动不同热可塑性形式的研究,可能会错误解读变温动物对环境变暖的反应。