CMAT, ICAMS , Ruhr-Universität Bochum , 44780 Bochum , Germany.
Institute of Materials Chemistry , TU Wien , A-1060 Vienna , Austria.
ACS Appl Mater Interfaces. 2019 Feb 27;11(8):8175-8181. doi: 10.1021/acsami.8b17525. Epub 2019 Feb 12.
Crystal imperfections such as dislocations strongly influence the performance and thermal transport behavior of GaN-based devices. We show that the experimental data used to parametrize the effect of dislocations on the thermal conductivity can be explained using only the reported film thickness and point defect concentrations. The analysis highlights the boundary-scattering-governed reduction of thermal conductivity in GaN, which had been underestimated in earlier models. To quantify the influence of dislocations on the thermal transport in GaN, we adopt a Green's function approach based on accurate ab initio interatomic force constants. While calculations at the level of density functional theory are necessary for three-phonon and point defect scattering, we show that scattering due to dislocations can be satisfactorily approximated using semiempirical potentials. This makes the Green's function approach to dislocation scattering a quantitatively predictive, yet computationally practical, method for obtaining detailed phonon scattering rates.
晶体缺陷,如位错,强烈影响基于 GaN 的器件的性能和热输运行为。我们表明,用于参数化位错对热导率的影响的实验数据仅可以用所报道的薄膜厚度和点缺陷浓度来解释。该分析突出了 GaN 中边界散射控制的热导率降低,这在早期模型中被低估了。为了量化位错对 GaN 中热输运的影响,我们采用了基于精确从头算原子间力常数的格林函数方法。虽然三声子和点缺陷散射需要密度泛函理论水平的计算,但我们表明,位错散射可以用半经验势很好地近似。这使得基于格林函数的位错散射方法成为一种定量预测但计算上实用的方法,用于获得详细的声子散射率。