Suppr超能文献

沿石墨烯晶界的声子热输运:一个隐藏的弱点。

Phononic Thermal Transport along Graphene Grain Boundaries: A Hidden Vulnerability.

作者信息

Tong Zhen, Pecchia Alessandro, Yam ChiYung, Dumitrică Traian, Frauenheim Thomas

机构信息

Shenzhen JL Computational Science and Applied Research Institute, Shenzhen, 518131, China.

CNR-ISMN, Via Salaria km 29.300, Monterotondo, Rome, 00017, Italy.

出版信息

Adv Sci (Weinh). 2021 Sep;8(18):e2101624. doi: 10.1002/advs.202101624. Epub 2021 Jul 21.

Abstract

While graphene grain boundaries (GBs) are well characterized experimentally, their influence on transport properties is less understood. As revealed here, phononic thermal transport is vulnerable to GBs even when they are ultra-narrow and aligned along the temperature gradient direction. Non-equilibrium molecular dynamics simulations uncover large reductions in the phononic thermal conductivity (κ ) along linear GBs comprising periodically repeating pentagon-heptagon dislocations. Green's function calculations and spectral energy density analysis indicate that the origin of the κ reduction is hidden in the periodic GB strain field, which behaves as a reflective diffraction grating with either diffuse or specular phonon reflections, and represents a source of anharmonic phonon-phonon scattering. The non-monotonic dependence with dislocation density of κ uncovered here is unaccounted for by the classical Klemens theory. It can help identify GB structures that can best preserve the integrity of the phononic transport.

摘要

虽然石墨烯晶界(GBs)在实验上已得到充分表征,但其对输运性质的影响却了解较少。如本文所揭示的,即使晶界超窄且沿温度梯度方向排列,声子热输运也易受晶界影响。非平衡分子动力学模拟发现,沿包含周期性重复五边形 - 七边形位错的线性晶界,声子热导率(κ)大幅降低。格林函数计算和谱能量密度分析表明,κ降低的根源隐藏在周期性晶界应变场中,该应变场表现为具有漫反射或镜面声子反射的反射衍射光栅,并且是声子 - 声子非谐散射的一个来源。这里发现的κ与位错密度的非单调依赖关系无法用经典的克莱门斯理论解释。它有助于识别能最佳保持声子输运完整性的晶界结构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aefc/8456227/46b4972ea3dc/ADVS-8-2101624-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验