Tong Zhen, Pecchia Alessandro, Yam ChiYung, Dumitrică Traian, Frauenheim Thomas
Shenzhen JL Computational Science and Applied Research Institute, Shenzhen, 518131, China.
CNR-ISMN, Via Salaria km 29.300, Monterotondo, Rome, 00017, Italy.
Adv Sci (Weinh). 2021 Sep;8(18):e2101624. doi: 10.1002/advs.202101624. Epub 2021 Jul 21.
While graphene grain boundaries (GBs) are well characterized experimentally, their influence on transport properties is less understood. As revealed here, phononic thermal transport is vulnerable to GBs even when they are ultra-narrow and aligned along the temperature gradient direction. Non-equilibrium molecular dynamics simulations uncover large reductions in the phononic thermal conductivity (κ ) along linear GBs comprising periodically repeating pentagon-heptagon dislocations. Green's function calculations and spectral energy density analysis indicate that the origin of the κ reduction is hidden in the periodic GB strain field, which behaves as a reflective diffraction grating with either diffuse or specular phonon reflections, and represents a source of anharmonic phonon-phonon scattering. The non-monotonic dependence with dislocation density of κ uncovered here is unaccounted for by the classical Klemens theory. It can help identify GB structures that can best preserve the integrity of the phononic transport.
虽然石墨烯晶界(GBs)在实验上已得到充分表征,但其对输运性质的影响却了解较少。如本文所揭示的,即使晶界超窄且沿温度梯度方向排列,声子热输运也易受晶界影响。非平衡分子动力学模拟发现,沿包含周期性重复五边形 - 七边形位错的线性晶界,声子热导率(κ)大幅降低。格林函数计算和谱能量密度分析表明,κ降低的根源隐藏在周期性晶界应变场中,该应变场表现为具有漫反射或镜面声子反射的反射衍射光栅,并且是声子 - 声子非谐散射的一个来源。这里发现的κ与位错密度的非单调依赖关系无法用经典的克莱门斯理论解释。它有助于识别能最佳保持声子输运完整性的晶界结构。