Zheng Xueying, Fu Haoyu, Hu Chenchen, Xu Hui, Huang Ying, Wen Jiayun, Sun Huabin, Luo Wei, Huang Yunhui
Institute of New Energy for Vehicles, School of Materials Science and Engineering , Tongji University , Shanghai 201804 , China.
J Phys Chem Lett. 2019 Feb 21;10(4):707-714. doi: 10.1021/acs.jpclett.8b03536. Epub 2019 Feb 1.
Development of the next-generation, high-energy-density, low-cost batteries will likely be fueled by sodium (Na) metal batteries because of their high capacity and the abundance of Na. However, their practical application is significantly plagued by the hyper-reactivity of Na metal, unstable solid electrolyte interphase (SEI), and dendritic Na growth, leading to continuous electrolyte decomposition, low Coulombic efficiency, large impedance, and safety concerns. Herein, we add a small amount of SnCl additive in a common carbonate electrolyte so that the spontaneous reaction between SnCl and Na metal enables in situ formation of a Na-Sn alloy layer and a compact NaCl-rich SEI. Benefitting from this design, rapid interfacial ion transfer is realized and direct exposure of Na metal to the electrolyte is prohibited, which jointly achieve a nondendritic deposition morphology and a markedly reduced voltage hysteresis in a Na/Na symmetric cell for over 500 h. The Na/SnCl-added electrolyte/NaV(PO) full cell exhibits high capacity retention over cycling and excellent rate capability (101 mAh/g at 10 C). This work can provide an easily scalable and cost-effective approach for developing high-performance Na-metal batteries.
下一代高能量密度、低成本电池的发展可能会由钠(Na)金属电池推动,因为它们具有高容量以及钠的储量丰富。然而,它们的实际应用受到钠金属的高反应活性、不稳定的固体电解质界面(SEI)和钠枝晶生长的严重困扰,导致电解质持续分解、库仑效率低、阻抗大以及安全问题。在此,我们在一种常见的碳酸盐电解质中添加少量SnCl添加剂,使得SnCl与钠金属之间的自发反应能够原位形成一层Na-Sn合金层和一个致密的富含NaCl的SEI。受益于这种设计,实现了快速的界面离子转移,并且钠金属被禁止直接暴露于电解质中,这共同在一个Na/Na对称电池中实现了超过500小时的无枝晶沉积形态和显著降低的电压滞后。添加了Na/SnCl的电解质/NaV(PO)全电池在循环过程中表现出高容量保持率和优异的倍率性能(在10 C时为101 mAh/g)。这项工作可以为开发高性能钠金属电池提供一种易于扩展且具有成本效益的方法。