Li Ai-Min, Zavalij Peter Y, Omenya Fred, Li Xiaolin, Wang Chunsheng
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD, USA.
Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA.
Nat Nanotechnol. 2025 Mar;20(3):388-396. doi: 10.1038/s41565-024-01848-2. Epub 2025 Jan 23.
Room-temperature non-aqueous sodium metal batteries are viable candidates for cost-effective and safe electrochemical energy storage. However, they show low specific energy and poor cycle life as the use of conventional organic-based non-aqueous electrolyte solutions enables the formation of interphases that cannot prevent degradations at the positive and negative electrodes. Here, to promote the formation of inorganic NaF-rich interphases on both negative and positive electrodes, we propose the salt-in-presalt (SIPS) electrolyte formulation strategy. In SIPS, sodium bis(fluorosulfonyl)imide (NaFSI) salt is dissolved in the liquid precursor of the sodium bis(trifluoromethylsulfonyl)imide (NaTFSI) salt, that is, N,N-dimethyltrifluoromethane-sulfonamide, called PreTFSI. The prepared 0.5 M NaFSI in PreTFSI (SIPS5) electrolyte solution shows an electrochemical stability up to 6.7 V versus Na|Na and enables a Na stripping/plating average Coulombic efficiency of 99.7% at 2.0 mA cm and 4.0 mAh cm in Na||Al cell configuration. By testing SIPS5 in Na metal and 'anode-less' coin and pouch cell configurations using NaNiMnCoO or sulfurized polyacrylonitrile as positive electrode active materials, we demonstrate the ability of the SIPS strategy to deliver improved specific discharge capacity and capacity retentions at high cell potentials and moderate applied specific currents for cell cycle life up to 1,000 cycles.
室温非水钠金属电池是具有成本效益和安全性的电化学储能的可行候选者。然而,由于使用传统的有机基非水电解质溶液会形成无法防止正负极降解的界面相,它们表现出较低的比能量和较差的循环寿命。在此,为了促进在正负极上形成富含无机NaF的界面相,我们提出了盐包盐(SIPS)电解质配方策略。在SIPS中,双(氟磺酰)亚胺钠(NaFSI)盐溶解在双(三氟甲基磺酰)亚胺钠(NaTFSI)盐的液体前体中,即N,N-二甲基三氟甲磺酰胺,称为PreTFSI。制备的0.5 M NaFSI在PreTFSI(SIPS5)电解质溶液中相对于Na|Na显示出高达6.7 V的电化学稳定性,并且在Na||Al电池配置中,在2.0 mA cm和4.0 mAh cm下,Na剥离/电镀的平均库仑效率为99.7%。通过在Na金属以及使用NaNiMnCoO或硫化聚丙烯腈作为正极活性材料的“无阳极”硬币和软包电池配置中测试SIPS5,我们证明了SIPS策略在高电池电位和中等施加比电流下提供更高的比放电容量和容量保持率的能力,电池循环寿命可达1000次。