Interdisciplinary Programs Office, Hong Kong University of Science and Technology, Hong Kong.
Med Hypotheses. 2019 Feb;123:35-46. doi: 10.1016/j.mehy.2018.12.001. Epub 2018 Dec 19.
This paper proposes a theoretical framework for the biological learning mechanism as a general learning system. The proposal is as follows. The bursting and tonic modes of firing patterns found in many neuron types in the brain correspond to two separate modes of information processing, with one mode resulting in awareness, and another mode being subliminal. In such a coding scheme, a neuron in bursting state codes for the highest level of perceptual abstraction representing a pattern of sensory stimuli, or volitional abstraction representing a pattern of muscle contraction sequences. Within the 50-250 ms minimum integration time of experience, the bursting neurons form synchrony ensembles to allow for binding of related percepts. The degree which different bursting neurons can be merged into the same synchrony ensemble depends on the underlying cortical connections that represent the degree of perceptual similarity. These synchrony ensembles compete for selective attention to remain active. The dominant synchrony ensemble triggers episodic memory recall in the hippocampus, while forming new episodic memory with current sensory stimuli, resulting in a stream of thoughts. Neuromodulation modulates both top-down selection of synchrony ensembles, and memory formation. Episodic memory stored in the hippocampus is transferred to semantic and procedural memory in the cortex during rapid eye movement sleep, by updating cortical neuron synaptic weights with spike timing dependent plasticity. With the update of synaptic weights, new neurons become bursting while previous bursting neurons become tonic, allowing bursting neurons to move up to a higher level of perceptual abstraction. Finally, the proposed learning mechanism is compared with the back-propagation algorithm used in deep neural networks, and a proposal of how the credit assignment problem can be addressed by the current theory is presented.
本文提出了一个将生物学习机制作为通用学习系统的理论框架。建议如下。在大脑中的许多神经元类型中发现的爆发和紧张模式的发射模式对应于两种不同的信息处理模式,其中一种模式导致意识,另一种模式是潜意识。在这样的编码方案中,处于爆发状态的神经元对代表感觉刺激模式的最高水平的感知抽象或代表肌肉收缩序列模式的意志抽象进行编码。在体验的 50-250ms 最小积分时间内,爆发神经元形成同步集合,以允许相关感知的绑定。不同爆发神经元可以合并到同一个同步集合中的程度取决于表示感知相似性程度的皮质下连接。这些同步集合竞争选择性注意力以保持活跃。主导同步集合触发海马体中的情景记忆回忆,同时与当前感觉刺激形成新的情景记忆,从而产生一连串的想法。神经调制调节同步集合的自上而下选择和记忆形成。海马体中存储的情景记忆在快速眼动睡眠期间通过使用依赖于尖峰时间的可塑性更新皮质神经元突触权重转移到皮质中的语义和程序性记忆中。随着突触权重的更新,新的神经元开始爆发,而以前的爆发神经元变得紧张,从而允许爆发神经元上升到更高水平的感知抽象。最后,将提出的学习机制与深度神经网络中使用的反向传播算法进行比较,并提出如何通过当前理论解决信用分配问题。