Suppr超能文献

突触动力学:线性模型与自适应算法。

Synaptic dynamics: linear model and adaptation algorithm.

作者信息

Yousefi Ali, Dibazar Alireza A, Berger Theodore W

机构信息

Department of Electrical Engineering, University of Southern California, DRB 140, 1042 Downey Way, Los Angeles, CA, 90089-1111, United States.

Department of Biomedical Engineering, University of Southern California, DRB 384, 1042 Downey Way, Los Angeles, CA, 90089-1111, United States.

出版信息

Neural Netw. 2014 Aug;56:49-68. doi: 10.1016/j.neunet.2014.04.001. Epub 2014 Apr 28.

Abstract

In this research, temporal processing in brain neural circuitries is addressed by a dynamic model of synaptic connections in which the synapse model accounts for both pre- and post-synaptic processes determining its temporal dynamics and strength. Neurons, which are excited by the post-synaptic potentials of hundred of the synapses, build the computational engine capable of processing dynamic neural stimuli. Temporal dynamics in neural models with dynamic synapses will be analyzed, and learning algorithms for synaptic adaptation of neural networks with hundreds of synaptic connections are proposed. The paper starts by introducing a linear approximate model for the temporal dynamics of synaptic transmission. The proposed linear model substantially simplifies the analysis and training of spiking neural networks. Furthermore, it is capable of replicating the synaptic response of the non-linear facilitation-depression model with an accuracy better than 92.5%. In the second part of the paper, a supervised spike-in-spike-out learning rule for synaptic adaptation in dynamic synapse neural networks (DSNN) is proposed. The proposed learning rule is a biologically plausible process, and it is capable of simultaneously adjusting both pre- and post-synaptic components of individual synapses. The last section of the paper starts with presenting the rigorous analysis of the learning algorithm in a system identification task with hundreds of synaptic connections which confirms the learning algorithm's accuracy, repeatability and scalability. The DSNN is utilized to predict the spiking activity of cortical neurons and pattern recognition tasks. The DSNN model is demonstrated to be a generative model capable of producing different cortical neuron spiking patterns and CA1 Pyramidal neurons recordings. A single-layer DSNN classifier on a benchmark pattern recognition task outperforms a 2-Layer Neural Network and GMM classifiers while having fewer numbers of free parameters and decides with a shorter observation of data. DSNN performance in the benchmark pattern recognition problem shows 96.7% accuracy in classifying three classes of spiking activity.

摘要

在本研究中,脑神经网络中的时间处理通过突触连接的动态模型来解决,其中突触模型考虑了决定其时间动态和强度的突触前和突触后过程。由数百个突触的突触后电位激发的神经元构建了能够处理动态神经刺激的计算引擎。将分析具有动态突触的神经模型中的时间动态,并提出用于具有数百个突触连接的神经网络的突触自适应学习算法。本文首先介绍了突触传递时间动态的线性近似模型。所提出的线性模型大大简化了脉冲神经网络的分析和训练。此外,它能够以优于92.5%的精度复制非线性易化-抑制模型的突触响应。在本文的第二部分,提出了一种用于动态突触神经网络(DSNN)中突触自适应的监督式尖峰输入-尖峰输出学习规则。所提出的学习规则是一个生物学上合理的过程,并且它能够同时调整单个突触的突触前和突触后成分。本文的最后一部分首先对具有数百个突触连接的系统识别任务中的学习算法进行了严格分析,证实了学习算法的准确性、可重复性和可扩展性。DSNN被用于预测皮质神经元的尖峰活动和模式识别任务。DSNN模型被证明是一种生成模型,能够产生不同的皮质神经元尖峰模式和CA1锥体神经元记录。在基准模式识别任务中,单层DSNN分类器在自由参数数量较少的情况下优于两层神经网络和高斯混合模型分类器,并且在对数据进行更短时间的观察后就能做出决策。DSNN在基准模式识别问题中的性能显示,在对三类尖峰活动进行分类时准确率达到96.7%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验