Suppr超能文献

感染性心内膜炎的炎症生物标志物:预测死亡率的机器学习方法。

Inflammatory biomarkers in infective endocarditis: machine learning to predict mortality.

机构信息

Programa de Pós-Graduação em Infectologia e Medicina Tropical e Departamento de Clínica Médica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Erasmus Medical Center Rotterdam, the Netherlands.

出版信息

Clin Exp Immunol. 2019 Jun;196(3):374-382. doi: 10.1111/cei.13266. Epub 2019 Feb 17.

Abstract

Infective endocarditis (IE) is the cardiac disease with the highest rates of mortality. New biomarkers that are able to identify patients at risk for death are required to improve patient management and outcome. This study aims to investigate if cytokines, chemokines and growth factors measured at IE diagnosis can predict mortality. Patients with definite IE, according to the Duke's modified criteria, were included. Using high-performance Luminex assay, 27 different cytokines, chemokines and growth factors were analyzed. Machine learning techniques were used for the prediction of death and subsequently creating a decision tree, in which the cytokines, chemokines and growth factors were analyzed together with C-reactive protein (CRP). Sixty-nine patients were included, 41 (59%) male, median age 54 [interquartile range (IQR) = 41-65 years] and median time between onset of the symptoms and diagnosis was 12 days (IQR = 5-30 days). The in-hospital mortality was 26% (n = 18). Proinflammatory cytokines interkeukin (IL)-15 and C-C motif chemokine ligand (CCL4) were found to predict death, adding value to CRP levels. The decision tree predicted correctly the outcome of 91% of the patients at hospital admission. The high-risk group, defined as CRP ≥ 72 mg/dL, IL-15 ≥ 5·6 fg/ml and CCL4 ≥ 6·35 fg/ml had an 88% in-hospital mortality rate, whereas the patients classified as low-risk had a mortality rate of 8% (P = < 0·001). Cytokines IL-15 and CCL4 were predictors of mortality in IE, adding prognostic value beyond that provided by CRP levels. Assessment of cytokines has potential value for clinical risk stratification and monitoring in IE patients.

摘要

感染性心内膜炎 (IE) 是死亡率最高的心脏病。需要新的生物标志物来识别死亡风险患者,以改善患者管理和预后。本研究旨在探讨 IE 诊断时测量的细胞因子、趋化因子和生长因子是否可以预测死亡率。符合 Duke 改良标准的明确 IE 患者被纳入研究。使用高性能 Luminex 分析,分析了 27 种不同的细胞因子、趋化因子和生长因子。使用机器学习技术进行死亡预测,随后创建决策树,其中分析细胞因子、趋化因子和生长因子与 C 反应蛋白 (CRP) 一起分析。共纳入 69 例患者,41 例(59%)为男性,中位年龄为 54 岁(四分位距 [IQR] = 41-65 岁),症状出现至诊断的中位时间为 12 天(IQR = 5-30 天)。住院期间死亡率为 26%(n = 18)。促炎细胞因子白细胞介素(IL)-15 和 C-C 基序趋化因子配体(CCL4)被发现可预测死亡,增加了 CRP 水平的价值。决策树在入院时正确预测了 91%患者的结局。高风险组定义为 CRP ≥ 72mg/dL、IL-15 ≥ 5.6fg/ml 和 CCL4 ≥ 6.35fg/ml,住院期间死亡率为 88%,而低危组死亡率为 8%(P < 0.001)。细胞因子 IL-15 和 CCL4 是 IE 患者死亡的预测因子,在 CRP 水平提供的预后价值之外具有预测价值。细胞因子评估在 IE 患者的临床风险分层和监测方面具有潜在价值。

相似文献

引用本文的文献

本文引用的文献

5
Cytokine Signature in Infective Endocarditis.感染性心内膜炎中的细胞因子特征
PLoS One. 2015 Jul 30;10(7):e0133631. doi: 10.1371/journal.pone.0133631. eCollection 2015.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验