Suppr超能文献

基于二维/三维定量结构-性质关系模型研究双(亚胺)吡啶铁/钴配合物对乙烯聚合的催化性能

Catalytic performance of bis(imino)pyridine Fe/Co complexes toward ethylene polymerization by 2D-/3D-QSPR modeling.

作者信息

Yang Wenhong, Ma Zhifeng, Yi Jun, Ahmed Sadia, Sun Wen-Hua

机构信息

Key laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

CAS Research/Education Center for Excellence in Molecular Sciences and International School, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

J Comput Chem. 2019 May 15;40(13):1374-1386. doi: 10.1002/jcc.25792. Epub 2019 Jan 29.

Abstract

The two-dimensional and three-dimensional quantitative structure-property relationship (2D- and 3D-QSPR) approaches are applied to investigate the catalytic performance for a total data set of 55 bis(imino)pryridine iron and cobalt complexes, including the catalytic activity, molecular weight, and melting temperature of the product. The obtained models for the catalytic performance of interest exhibit good results by both 2D- and 3D-QSPR modeling, meanwhile higher predictive and validation powers observed in the 3D type. The modeling results indicate that the bulky substituents on ortho-position of the singular side phenyl ring and positive charge on para-position of the phenyl ring within the ligand are favorable to catalytic activity, while unfavorable to the molecular weight of product. Based on the obtained QSPR models, four new complexes are designed and predicted with good catalytic activity and very high molecular weight, which are in good agreement with our recent experimental report. © 2019 Wiley Periodicals, Inc.

摘要

二维和三维定量结构-性质关系(2D-和3D-QSPR)方法被用于研究55种双(亚氨基)吡啶铁和钴配合物的总数据集的催化性能,包括产物的催化活性、分子量和熔点。通过2D-和3D-QSPR建模,所获得的感兴趣的催化性能模型均显示出良好的结果,同时在3D类型中观察到更高的预测和验证能力。建模结果表明,配体中单个侧苯基环邻位上的庞大取代基和苯环对位上的正电荷有利于催化活性,而不利于产物的分子量。基于所获得的QSPR模型,设计并预测了四种具有良好催化活性和非常高的分子量的新配合物,并与我们最近的实验报告高度一致。© 2019威利期刊公司。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验