Suppr超能文献

通过机器学习预测双(亚胺基)吡啶金属配合物的催化活性。

Prediction of catalytic activities of bis(imino)pyridine metal complexes by machine learning.

机构信息

Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

J Comput Chem. 2020 Apr 30;41(11):1064-1067. doi: 10.1002/jcc.26160. Epub 2020 Feb 5.

Abstract

This work demonstrates the potential of machine learning (ML) method to predict catalytic activity of transition metal complex precatalyst toward ethylene polymerization. For this purpose, 294 complexes and 15 molecular descriptors were selected to build the artificial neural network (ANN) model. The catalytic activity can be well predicted by the obtained ANN model, which was further validated by external complexes. Boruta algorithm was employed to explicitly decipher the importance of descriptors, illustrating the conjugated bond structure, and bulky substitutions are favorable for catalytic activity. The present work indicates that ML could give useful guidance for the new design of homogenous polyolefin catalyst.

摘要

这项工作展示了机器学习(ML)方法在预测过渡金属配合物前催化剂对乙烯聚合催化活性方面的潜力。为此,选择了 294 种配合物和 15 种分子描述符来构建人工神经网络(ANN)模型。所得 ANN 模型可以很好地预测催化活性,并用外部配合物进行了进一步验证。Boruta 算法被用来明确地揭示描述符的重要性,表明共轭键结构和大取代基有利于催化活性。本工作表明,机器学习可以为均相聚烯烃催化剂的新设计提供有用的指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验