Suppr超能文献

解析源自高分子球体的碳纳米球结构与其电化学性能之间的关系,以实现高倍率超级电容器。

Unraveling the Correlation between Structures of Carbon Nanospheres Derived from Polymeric Spheres and Their Electrochemical Performance to Achieve High-Rate Supercapacitors.

机构信息

State Key Laboratory of Solidification Processing Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an, 710072, China.

Department of Orthopaedics, Shaanxi Provincial People's Hospital, The Affiliated Hospital of Northwestern Polytechnical University, Xi'an, 710068, China.

出版信息

Macromol Rapid Commun. 2019 Sep;40(17):e1800770. doi: 10.1002/marc.201800770. Epub 2019 Jan 30.

Abstract

Understanding correlation between the nanostructure of porous carbons and their ion transport behavior is critical for achieving high-performance supercapacitors. Herein, the relationship between size and shell thickness of carbon nanospheres (CNSs) and capacitive electrochemical performance is clarified. Structural uniform CNSs with controlled diameters, prepared via template-free interfacial copolymerization, are emerging as an ideal platform for investigating the ion transport behavior. It is found that ionic transport is significantly enhanced while the introduction of hollow cores with thinner shell, by virtue of the hollow nanopore-accelerated mass transport to reduce ion diffusion length. The proof-of-concept supercapacitors, constituted of carbons with diameter and shell thickness of 91 and 28 nm, respectively, can maintain highest capacitance retention ratio of 86% at a high sweep rate of 300 mVs , also far outperforming the commercial activated carbon in terms of capacitance, rate capability, and surface efficiency, promising a brilliant application.

摘要

理解多孔碳的纳米结构与其离子传输行为之间的关系对于实现高性能超级电容器至关重要。本文阐明了碳纳米球(CNS)的尺寸和壳厚与其电容电化学性能之间的关系。通过无模板界面共聚制备的具有可控直径且结构均匀的 CNS 作为研究离子输运行为的理想平台而崭露头角。研究发现,通过引入具有更薄壳的空心核,可以显著提高离子传输性能,这是由于空心纳米孔加速了质量传输,从而降低了离子扩散长度。由直径和壳厚分别为 91nm 和 28nm 的碳构成的概念验证超级电容器,在 300mVs 的高扫速下,仍能保持最高 86%的电容保持率,在电容、倍率性能和表面效率方面也远远优于商业活性炭,具有广阔的应用前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验