Liu Chao, Wang Jing, Li Jiansheng, Luo Rui, Shen Jinyou, Sun Xiuyun, Han Weiqing, Wang Lianjun
Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology , Nanjing 210094, People's Republic of China.
ACS Appl Mater Interfaces. 2015 Aug 26;7(33):18609-17. doi: 10.1021/acsami.5b05035. Epub 2015 Aug 11.
N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.
氮掺杂空心碳球(N-HCSs)作为超级电容器应用的电极材料具有很大潜力。在本工作中,我们报道了一种简便的一步合成法,以多巴胺(DA)为碳前驱体、正硅酸乙酯(TEOS)为结构辅助剂,在含有水、乙醇和氨的混合体系中合成离散且高度分散的N-HCSs。通过调节氨的用量,可以有效控制所得N-HCSs的结构,包括蛋黄壳空心碳球(YS-HCSs)、单壳空心碳球(SS-HCSs)和双壳空心碳球(DS-HCSs)。为了解释这些空心碳结构的关系和形成机制,对不同合成步骤的样品,包括聚合物/二氧化硅球、碳/二氧化硅球以及在空气中燃烧后的二氧化硅球,进行了透射电子显微镜(TEM)表征。对YS-HCSs、SS-HCSs和DS-HCSs进行的电化学测试表明,它们分别具有215、280和381 F g⁻¹的高电容。此外,所有氮掺杂空心碳纳米球均表现出良好的循环稳定性,在3000次循环后电容保持率为97.0%。值得注意的是,DS-HCSs高达381 F g⁻¹的最高电容高于迄今为止报道的许多碳基材料的电容,这可能归因于其高比表面积、空心结构、氮功能化和双壳结构。这类氮掺杂空心结构碳球作为先进的储能材料和催化剂载体可能具有广阔的前景。