Suppr超能文献

锰掺杂二硒化钼基面的缺陷和附加活性位用于有效酶固定化:过氧化氢传感的体外和体内实时分析。

Defect and Additional Active Sites on the Basal Plane of Manganese-Doped Molybdenum Diselenide for Effective Enzyme Immobilization: In Vitro and in Vivo Real-Time Analyses of Hydrogen Peroxide Sensing.

机构信息

Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , Taipei 10608 , Taiwan.

Chemistry Division, Center for General Education , Chang Gung University , Taoyuan 333 , Taiwan.

出版信息

ACS Appl Mater Interfaces. 2019 Feb 27;11(8):7862-7871. doi: 10.1021/acsami.8b22389. Epub 2019 Feb 12.

Abstract

The defect engineering makes the new concepts and designs to further enhance the electrocatalytic activity of layered structures. In this work, we demonstrated the synthesis of Mn-doped MoSe and reported the resultant defective sites. Subsequently, the MnMoSe was developed as a new type of electrocatalyst for electrochemical biosensors. The formation of defect/distortion and effective immobilization of myoglobin (Mb) were evidently confirmed by using the transmission electron microscopy and UV-vis spectroscopy analyses, respectively. The result of electrochemical impedance spectroscopy analysis reveals that the Mn doping not only helps  to enzyme immobilization but also enhances the electronic conductivity of layered material.  Owing to the multiple signal amplification strategies, the proposed Mb-immobilized MnMoSe (Mb@MnMoSe) exhibited an ultralow detection limit (0.004 μM) and a higher sensitivity (222.78 μA μM cm) of HO. In real-sample analysis, the Mb@MnMoSe showed a feasible recovery range of HO detection in human serum (95.6-102.1%), urine (101.2-102.3%), and rain water (100.7-102.1%) samples. On the other hand, an in vivo study using HaCaT (7.1 × 10/mL) and RAW 264.7 (1 × 10/mL) living cells showed the feasible current responses of 0.096 and 0.085 μA, respectively. Finally, the Mn doping gives a new opportunity to fabricate a promising electrocatalyst for HO biosensing.

摘要

缺陷工程使新概念和设计能够进一步提高层状结构的电催化活性。在这项工作中,我们展示了 Mn 掺杂 MoSe 的合成,并报道了由此产生的缺陷部位。随后,将 MnMoSe 开发为电化学生物传感器的新型电催化剂。通过使用透射电子显微镜和紫外可见光谱分析分别明显证实了缺陷/变形的形成和肌红蛋白(Mb)的有效固定化。电化学阻抗谱分析的结果表明,Mn 掺杂不仅有助于酶的固定化,而且还增强了层状材料的电子导电性。由于采用了多种信号放大策略,所提出的 Mb 固定化 MnMoSe(Mb@MnMoSe)表现出超低的检测限(0.004 μM)和更高的灵敏度(222.78 μA μM cm)的 HO。在实际样品分析中,Mb@MnMoSe 显示出在人血清(95.6-102.1%)、尿液(101.2-102.3%)和雨水(100.7-102.1%)样品中进行 HO 检测的可行回收率范围。另一方面,使用 HaCaT(7.1×10/mL)和 RAW 264.7(1×10/mL)活细胞进行的体内研究分别显示出 0.096 和 0.085 μA 的可行电流响应。最后,Mn 掺杂为 HO 生物传感提供了一种制造有前途的电催化剂的新机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验