Suppr超能文献

脑皮层层间的θ/δ 耦合有助于语义认知。

Theta/delta coupling across cortical laminae contributes to semantic cognition.

机构信息

Hull York Medical School, University of York , York , United Kingdom.

Department of Psychology, University of York , York , United Kingdom.

出版信息

J Neurophysiol. 2019 Apr 1;121(4):1150-1161. doi: 10.1152/jn.00686.2018. Epub 2019 Jan 30.

Abstract

Rhythmic activity in populations of neurons is associated with cognitive and motor function. Our understanding of the neuronal mechanisms underlying these core brain functions has benefitted from demonstrations of cellular, synaptic, and network phenomena, leading to the generation of discrete rhythms at the local network level. However, discrete frequencies of rhythmic activity rarely occur alone. Despite this, little is known about why multiple rhythms are generated together or what mechanisms underlie their interaction to promote brain function. One overarching theory is that different temporal scales of rhythmic activity correspond to communication between brain regions separated by different spatial scales. To test this, we quantified the cross-frequency interactions between two dominant rhythms-theta and delta activity-manifested during magnetoencephalography recordings of subjects performing a word-pair semantic decision task. Semantic processing has been suggested to involve the formation of functional links between anatomically disparate neuronal populations over a range of spatial scales, and a distributed network was manifest in the profile of theta-delta coupling seen. Furthermore, differences in the pattern of theta-delta coupling significantly correlated with semantic outcome. Using an established experimental model of concurrent delta and theta rhythms in neocortex, we show that these outcome-dependent dynamics could be reproduced in a manner determined by the strength of cholinergic neuromodulation. Theta-delta coupling correlated with discrete neuronal activity motifs segregated by the cortical layer, neuronal intrinsic properties, and long-range axonal targets. Thus, the model suggested that local, interlaminar neocortical theta-delta coupling may serve to coordinate both cortico-cortical and cortico-subcortical computations during distributed network activity. NEW & NOTEWORTHY Here, we show, for the first time, that a network of spatially distributed brain regions can be revealed by cross-frequency coupling between delta and theta frequencies in subjects using magnetoencephalography recording during a semantic decision task. A biological model of this cross-frequency coupling suggested an interlaminar, cell-specific division of labor within the neocortex may serve to route the flow of cortico-cortical and cortico-subcortical information to promote such spatially distributed, functional networks.

摘要

神经元群体的节律活动与认知和运动功能有关。我们对这些核心脑功能的神经元机制的理解得益于细胞、突触和网络现象的证明,这导致了局部网络水平上离散节律的产生。然而,离散频率的节律活动很少单独出现。尽管如此,人们对为什么会产生多种节律以及它们相互作用促进大脑功能的机制知之甚少。一个总体理论是,不同时间尺度的节律活动对应于通过不同空间尺度分隔的脑区之间的通信。为了检验这一点,我们在进行语词对语义决策任务的被试者的脑磁图记录中,量化了两种主要节律——θ节律和δ节律之间的跨频相互作用。语义处理被认为涉及在一系列空间尺度上,通过解剖上不同的神经元群体之间形成功能联系,而在观察到的θ-δ耦合模式中表现出分布式网络。此外,θ-δ耦合模式的差异与语义结果显著相关。使用新皮层中同时存在的δ和θ节律的既定实验模型,我们表明,这些依赖于结果的动力学可以以乙酰胆碱能神经调制强度决定的方式再现。θ-δ耦合与通过皮质层、神经元内在特性和长程轴突靶标分离的离散神经元活动模式显著相关。因此,该模型表明,局部、层间新皮层的θ-δ耦合可能有助于在分布式网络活动期间协调皮质-皮质和皮质-皮质下计算。 新内容和值得注意的内容 在这里,我们首次表明,在语义决策任务中使用脑磁图记录,通过δ和θ频率之间的跨频耦合,可以在使用脑磁图记录的被试者中揭示出一个由空间分布的脑区组成的网络。这种跨频耦合的生物模型表明,新皮层内的层间、细胞特异性分工可能有助于引导皮质-皮质和皮质-皮质下信息的流动,以促进这种空间分布式的功能网络。

相似文献

1
Theta/delta coupling across cortical laminae contributes to semantic cognition.
J Neurophysiol. 2019 Apr 1;121(4):1150-1161. doi: 10.1152/jn.00686.2018. Epub 2019 Jan 30.
2
Phase-amplitude coupling and interlaminar synchrony are correlated in human neocortex.
J Neurosci. 2014 Nov 26;34(48):15923-30. doi: 10.1523/JNEUROSCI.2771-14.2014.
4
A neocortical delta rhythm facilitates reciprocal interlaminar interactions via nested theta rhythms.
J Neurosci. 2013 Jun 26;33(26):10750-61. doi: 10.1523/JNEUROSCI.0735-13.2013.
6
In vitro recordings of human neocortical oscillations.
Cereb Cortex. 2015 Mar;25(3):578-97. doi: 10.1093/cercor/bht235. Epub 2013 Sep 17.
7
Cerebellar Theta and Beta Noninvasive Stimulation Rhythms Differentially Influence Episodic Memory versus Semantic Prediction.
J Neurosci. 2020 Sep 16;40(38):7300-7310. doi: 10.1523/JNEUROSCI.0595-20.2020. Epub 2020 Aug 19.
8
Prefrontal-hippocampal coupling by theta rhythm and by 2-5 Hz oscillation in the delta band: The role of the nucleus reuniens of the thalamus.
Brain Struct Funct. 2017 Aug;222(6):2819-2830. doi: 10.1007/s00429-017-1374-6. Epub 2017 Feb 16.
9
High gamma power is phase-locked to theta oscillations in human neocortex.
Science. 2006 Sep 15;313(5793):1626-8. doi: 10.1126/science.1128115.
10
A Respiration-Coupled Rhythm in the Rat Hippocampus Independent of Theta and Slow Oscillations.
J Neurosci. 2016 May 11;36(19):5338-52. doi: 10.1523/JNEUROSCI.3452-15.2016.

引用本文的文献

2
Improving working memory by electrical stimulation and cross-frequency coupling.
Mol Brain. 2024 Oct 1;17(1):72. doi: 10.1186/s13041-024-01142-1.
3
Sharpening Working Memory With Real-Time Electrophysiological Brain Signals: Which Neurofeedback Paradigms Work?
Front Aging Neurosci. 2022 Mar 28;14:780817. doi: 10.3389/fnagi.2022.780817. eCollection 2022.
4
Small-World Propensity Reveals the Frequency Specificity of Resting State Networks.
IEEE Open J Eng Med Biol. 2020 Feb 14;1:57-64. doi: 10.1109/OJEMB.2020.2965323. eCollection 2020.
5
Differential contributions of synaptic and intrinsic inhibitory currents to speech segmentation via flexible phase-locking in neural oscillators.
PLoS Comput Biol. 2021 Apr 14;17(4):e1008783. doi: 10.1371/journal.pcbi.1008783. eCollection 2021 Apr.
6
GABA-ergic Dynamics in Human Frontotemporal Networks Confirmed by Pharmaco-Magnetoencephalography.
J Neurosci. 2020 Feb 19;40(8):1640-1649. doi: 10.1523/JNEUROSCI.1689-19.2019. Epub 2020 Jan 8.

本文引用的文献

1
The fundamental advantages of temporal networks.
Science. 2017 Nov 24;358(6366):1042-1046. doi: 10.1126/science.aai7488.
3
The neural and computational bases of semantic cognition.
Nat Rev Neurosci. 2017 Jan;18(1):42-55. doi: 10.1038/nrn.2016.150. Epub 2016 Nov 24.
4
Cell type-specific long-range connections of basal forebrain circuit.
Elife. 2016 Sep 19;5:e13214. doi: 10.7554/eLife.13214.
5
Decoding subjective decisions from orbitofrontal cortex.
Nat Neurosci. 2016 Jul;19(7):973-80. doi: 10.1038/nn.4320. Epub 2016 Jun 6.
7
Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function.
Neuron. 2015 Dec 16;88(6):1253-1267. doi: 10.1016/j.neuron.2015.11.002. Epub 2015 Dec 6.
8
Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions.
Trends Neurosci. 2015 Nov;38(11):725-740. doi: 10.1016/j.tins.2015.09.001.
9
Rhythms for Cognition: Communication through Coherence.
Neuron. 2015 Oct 7;88(1):220-35. doi: 10.1016/j.neuron.2015.09.034.
10
Separating Fractal and Oscillatory Components in the Power Spectrum of Neurophysiological Signal.
Brain Topogr. 2016 Jan;29(1):13-26. doi: 10.1007/s10548-015-0448-0. Epub 2015 Aug 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验