Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada.
PLoS One. 2019 Jan 30;14(1):e0210339. doi: 10.1371/journal.pone.0210339. eCollection 2019.
The bacterium Sporosarcina pasteurii (SP) is known for its ability to cause the phenomenon of microbially induced calcium carbonate precipitation (MICP). We explored bacterial participation in the initial stages of the MICP process at the cellular length scale under two different growth environments (a) liquid culture (b) MICP in a soft agar (0.5%) column. In the liquid culture, ex-situ imaging of the cellular environment indicated that S. pasteurii was facilitating nucleation of nanoscale crystals of calcium carbonate on bacterial cell surface and its growth via ureolysis. During the same period, the meso-scale environment (bulk medium) was found to have overgrown calcium carbonate crystals. The effect of media components (urea, CaCl2), presence of live and dead in the growth medium were explored. The agar column method allows for in-situ visualization of the phenomena, and using this platform, we found conclusive evidence of the bacterial cell surface facilitating formation of nanoscale crystals in the microenvironment. Here also the bulk environment or the meso-scale environment was found to possess overgrown calcium carbonate crystals. Extensive elemental analysis using Energy dispersive X-ray spectroscopy (EDS) and X-ray powder diffraction (XRD), confirmed that the crystals to be calcium carbonate, and two different polymorphs (calcite and vaterite) were identified. Active participation of S. pasteurii cell surface as the site of calcium carbonate precipitation has been shown using EDS elemental mapping with Scanning transmission electron microscopy (STEM) and scanning electron microscopy (SEM).
芽孢八叠球菌(Sporosarcina pasteurii,简称 SP)以其诱导碳酸钙沉淀(MICP)的能力而闻名。我们在两种不同的生长环境(a)液体培养和(b)软琼脂(0.5%)柱中的 MICP 下,探索了细菌在 MICP 初始阶段的细胞尺度上的参与情况。在液体培养中,细胞环境的异位成像表明,芽孢八叠球菌通过脲酶作用促进纳米级碳酸钙晶体在细菌表面的成核及其生长。同期,中尺度环境(培养基)中发现碳酸钙晶体过度生长。研究了培养基成分(尿素、CaCl2)的影响,以及生长培养基中活细胞和死细胞的存在情况。琼脂柱方法可实现现象的原位可视化,并且使用该平台,我们发现了确凿的证据表明细菌细胞表面有助于微环境中纳米级晶体的形成。同样,也发现大环境或中尺度环境中存在碳酸钙晶体过度生长。使用能量色散 X 射线光谱法(EDS)和 X 射线粉末衍射(XRD)进行广泛的元素分析,证实晶体为碳酸钙,并且鉴定出两种不同的多晶型物(方解石和文石)。使用扫描透射电子显微镜(STEM)和扫描电子显微镜(SEM)的 EDS 元素映射显示,芽孢八叠球菌细胞表面积极参与碳酸钙沉淀。