Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juarez 147, Centro, Zacatecas 98000, Zac, Mexico.
Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Del. Cuauhtémoc, Ciudad de México CP 06720, Mexico.
Int J Environ Res Public Health. 2019 Jan 29;16(3):381. doi: 10.3390/ijerph16030381.
Diabetes is a chronic and noncommunicable but preventable disease that is affecting the Mexican population at worrying levels, being the first place in prevalence worldwide. Early diabetes detection has become important to prevent other health conditions that involve low organ yield until the patient death. Based on this problem, this work proposes the architecture of an Artificial Neural Network (ANN) for the automated classification of healthy patients from diabetics patients. The analysis was performed used a set of 19 para-clinical features to determine the health status of the patients. The developed model was evaluated through a statistical analysis based on the calculation of the loss function, accuracy, area under the curve (AUC) and receiving operating characteristics (ROC) curve. The results obtained present statistically significant values, with accuracy of 0.94 and AUC values of 0.98. Based on these results, it is possible to conclude that the ANN implemented in this work can classify patients with presence of diabetes from controls with significant accuracy, presenting preliminary results for the development of a diagnostic tool that can be supportive for health specialists.
糖尿病是一种慢性、非传染性但可预防的疾病,正以令人担忧的程度影响着墨西哥人口,其患病率居世界首位。早期发现糖尿病对于预防涉及器官功能低下直至患者死亡的其他健康状况变得尤为重要。基于这一问题,本工作提出了一种人工神经网络(ANN)的架构,用于对健康患者和糖尿病患者进行自动分类。使用一组 19 个临床前特征对患者的健康状况进行了分析。通过基于损失函数、准确性、曲线下面积(AUC)和接收者操作特性(ROC)曲线计算的统计分析对所开发的模型进行了评估。得到的结果具有统计学意义,准确率为 0.94,AUC 值为 0.98。基于这些结果,可以得出结论,本工作中实现的 ANN 可以以很高的准确性对患有糖尿病的患者和对照者进行分类,为开发一种可支持健康专家的诊断工具提供了初步结果。