文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多参数 MRI 的深度卷积神经网络用于前列腺癌的计算机辅助诊断。

Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI.

机构信息

Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China.

Department of Radiology, First Affiliated Hospital with Nanjing Medical University, Nanjing, China.

出版信息

J Magn Reson Imaging. 2018 Dec;48(6):1570-1577. doi: 10.1002/jmri.26047. Epub 2018 Apr 16.


DOI:10.1002/jmri.26047
PMID:29659067
Abstract

BACKGROUND: Deep learning is the most promising methodology for automatic computer-aided diagnosis of prostate cancer (PCa) with multiparametric MRI (mp-MRI). PURPOSE: To develop an automatic approach based on deep convolutional neural network (DCNN) to classify PCa and noncancerous tissues (NC) with mp-MRI. STUDY TYPE: Retrospective. SUBJECTS: In all, 195 patients with localized PCa were collected from a PROSTATEx database. In total, 159/17/19 patients with 444/48/55 observations (215/23/23 PCas and 229/25/32 NCs) were randomly selected for training/validation/testing, respectively. SEQUENCE: T -weighted, diffusion-weighted, and apparent diffusion coefficient images. ASSESSMENT: A radiologist manually labeled the regions of interest of PCas and NCs and estimated the Prostate Imaging Reporting and Data System (PI-RADS) scores for each region. Inspired by VGG-Net, we designed a patch-based DCNN model to distinguish between PCa and NCs based on a combination of mp-MRI data. Additionally, an enhanced prediction method was used to improve the prediction accuracy. The performance of DCNN prediction was tested using a receiver operating characteristic (ROC) curve, and the area under the ROC curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated. Moreover, the predicted result was compared with the PI-RADS score to evaluate its clinical value using decision curve analysis. STATISTICAL TEST: Two-sided Wilcoxon signed-rank test with statistical significance set at 0.05. RESULTS: The DCNN produced excellent diagnostic performance in distinguishing between PCa and NC for testing datasets with an AUC of 0.944 (95% confidence interval: 0.876-0.994), sensitivity of 87.0%, specificity of 90.6%, PPV of 87.0%, and NPV of 90.6%. The decision curve analysis revealed that the joint model of PI-RADS and DCNN provided additional net benefits compared with the DCNN model and the PI-RADS scheme. DATA CONCLUSION: The proposed DCNN-based model with enhanced prediction yielded high performance in statistical analysis, suggesting that DCNN could be used in computer-aided diagnosis (CAD) for PCa classification. LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:1570-1577.

摘要

背景:深度学习是一种最有前途的方法,可用于对前列腺癌(PCa)的多参数 MRI(mp-MRI)进行自动计算机辅助诊断。

目的:开发一种基于深度卷积神经网络(DCNN)的自动方法,用于对 mp-MRI 中的 PCa 和非癌组织(NC)进行分类。

研究类型:回顾性。

受试者:共从 PROSTATEx 数据库中收集了 195 例局限性 PCa 患者。总共随机选择了 159/17/19 例患者的 444/48/55 个观察结果(215/23/23 例 PCa 和 229/25/32 例 NC)进行训练/验证/测试。

序列:T 加权、弥散加权和表观弥散系数图像。

评估:一位放射科医生手动标记了 PCa 和 NC 的感兴趣区域,并为每个区域估计了前列腺成像报告和数据系统(PI-RADS)评分。受 VGG-Net 的启发,我们设计了一种基于补丁的 DCNN 模型,该模型基于 mp-MRI 数据组合来区分 PCa 和 NC。此外,还使用增强预测方法来提高预测精度。使用受试者工作特征(ROC)曲线测试 DCNN 预测的性能,并计算 ROC 曲线下的面积(AUC)、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)。此外,还通过决策曲线分析将预测结果与 PI-RADS 评分进行比较,以评估其临床价值。

统计检验:采用双侧 Wilcoxon 符号秩检验,显著性水平为 0.05。

结果:DCNN 在测试数据集上区分 PCa 和 NC 的诊断性能非常出色,AUC 为 0.944(95%置信区间:0.876-0.994),敏感性为 87.0%,特异性为 90.6%,PPV 为 87.0%,NPV 为 90.6%。决策曲线分析表明,PI-RADS 和 DCNN 的联合模型与 DCNN 模型和 PI-RADS 方案相比提供了额外的净收益。

数据结论:提出的基于 DCNN 的增强预测模型在统计学分析中表现出了较高的性能,表明 DCNN 可用于 PCa 分类的计算机辅助诊断(CAD)。

证据水平:3 级 磁共振成像杂志 2018 年;48 期:1570-1577 页

相似文献

[1]
Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI.

J Magn Reson Imaging. 2018-4-16

[2]
Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2.

J Magn Reson Imaging. 2018-9-19

[3]
Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network.

Eur Radiol. 2019-8-29

[4]
Fully automatic segmentation on prostate MR images based on cascaded fully convolution network.

J Magn Reson Imaging. 2018-10-22

[5]
Using support vector machine analysis to assess PartinMR: A new prediction model for organ-confined prostate cancer.

J Magn Reson Imaging. 2018-2-13

[6]
Automated image quality evaluation of structural brain MRI using an ensemble of deep learning networks.

J Magn Reson Imaging. 2019-2-27

[7]
[Preliminary applicability evaluation of Prostate Imaging Reporting and Data System version 2 diagnostic score in 3.0T multi-parameters magnetic resonance imaging combined with prostate specific antigen density for prostate cancer].

Zhonghua Yi Xue Za Zhi. 2017-12-19

[8]
Prospective comparison of a fast 1.5-T biparametric with the 3.0-T multiparametric ESUR magnetic resonance imaging protocol as a triage test for men at risk of prostate cancer.

BJU Int. 2018-10-19

[9]
Prebiopsy multiparametric MRI-based risk score for predicting prostate cancer in biopsy-naive men with prostate-specific antigen between 4-10 ng/mL.

J Magn Reson Imaging. 2017-9-4

[10]
Computer-aided diagnosis of prostate cancer based on deep neural networks from multi-parametric magnetic resonance imaging.

Front Physiol. 2022-8-29

引用本文的文献

[1]
Evaluation of a deep learning prostate cancer detection system on biparametric MRI against radiological reading.

Eur Radiol. 2025-6

[2]
External validation of AI for detecting clinically significant prostate cancer using biparametric MRI.

Abdom Radiol (NY). 2025-2

[3]
Catalyzing Precision Medicine: Artificial Intelligence Advancements in Prostate Cancer Diagnosis and Management.

Cancers (Basel). 2024-5-9

[4]
Computer-aided detection of prostate cancer in early stages using multi-parameter MRI: A promising approach for early diagnosis.

Technol Health Care. 2024

[5]
Transfer learning with CNNs for efficient prostate cancer and BPH detection in transrectal ultrasound images.

Sci Rep. 2023-12-9

[6]
A classifier model for prostate cancer diagnosis using CNNs and transfer learning with multi-parametric MRI.

Front Oncol. 2023-11-9

[7]
An artificial intelligence-assisted diagnosis modeling software (AIMS) platform based on medical images and machine learning: a development and validation study.

Quant Imaging Med Surg. 2023-11-1

[8]
3D-Vision-Transformer Stacking Ensemble for Assessing Prostate Cancer Aggressiveness from T2w Images.

Bioengineering (Basel). 2023-8-28

[9]
Deep Learning Algorithm for Tumor Segmentation and Discrimination of Clinically Significant Cancer in Patients with Prostate Cancer.

Curr Oncol. 2023-8-1

[10]
DeepKOA: a deep-learning model for predicting progression in knee osteoarthritis using multimodal magnetic resonance images from the osteoarthritis initiative.

Quant Imaging Med Surg. 2023-8-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索