Suppr超能文献

一种基于单细胞 RNA-Seq 数据的混合聚类算法,用于识别细胞类型。

A Hybrid Clustering Algorithm for Identifying Cell Types from Single-Cell RNA-Seq Data.

机构信息

School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China.

School of Computer Science and Engineering, Yulin Normal University, Yulin, Guangxi 537000, China.

出版信息

Genes (Basel). 2019 Jan 29;10(2):98. doi: 10.3390/genes10020098.

Abstract

Single-cell RNA sequencing (scRNA-seq) has recently brought new insight into cell differentiation processes and functional variation in cell subtypes from homogeneous cell populations. A lack of prior knowledge makes unsupervised machine learning methods, such as clustering, suitable for analyzing scRNA-seq . However, there are several limitations to overcome, including high dimensionality, clustering result instability, and parameter adjustment complexity. In this study, we propose a method by combining structure entropy and k nearest neighbor to identify cell subpopulations in scRNA-seq data. In contrast to existing clustering methods for identifying cell subtypes, minimized structure entropy results in natural communities without specifying the number of clusters. To investigate the performance of our model, we applied it to eight scRNA-seq datasets and compared our method with three existing methods (nonnegative matrix factorization, single-cell interpretation via multikernel learning, and structural entropy minimization principle). The experimental results showed that our approach achieves, on average, better performance in these datasets compared to the benchmark methods.

摘要

单细胞 RNA 测序 (scRNA-seq) 最近为细胞分化过程和同质细胞群体中细胞亚型的功能变异提供了新的见解。由于缺乏先验知识,无监督机器学习方法(如聚类)适合分析 scRNA-seq。然而,仍有几个限制需要克服,包括高维性、聚类结果不稳定和参数调整的复杂性。在这项研究中,我们提出了一种方法,通过结合结构熵和 k 最近邻来识别 scRNA-seq 数据中的细胞亚群。与现有的用于识别细胞亚型的聚类方法不同,最小化的结构熵导致自然群落的形成,而无需指定聚类的数量。为了研究我们模型的性能,我们将其应用于八个 scRNA-seq 数据集,并将我们的方法与三种现有的方法(非负矩阵分解、通过多核学习进行单细胞解释和结构熵最小化原理)进行了比较。实验结果表明,与基准方法相比,我们的方法在这些数据集上的平均性能更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/875d/6409843/eff939df6034/genes-10-00098-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验