文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

JLONMFSC:基于非负矩阵分解和子空间聚类联合学习的 scRNA-seq 数据聚类。

JLONMFSC: Clustering scRNA-seq data based on joint learning of non-negative matrix factorization and subspace clustering.

机构信息

School of Computer, Electronic and Information, Guangxi University, Nanning, China; Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China.

School of Computer, Electronic and Information, Guangxi University, Nanning, China.

出版信息

Methods. 2024 Feb;222:1-9. doi: 10.1016/j.ymeth.2023.11.019. Epub 2023 Dec 19.


DOI:10.1016/j.ymeth.2023.11.019
PMID:38128706
Abstract

The development of single cell RNA sequencing (scRNA-seq) has provided new perspectives to study biological problems at the single cell level. One of the key issues in scRNA-seq data analysis is to divide cells into several clusters for discovering the heterogeneity and diversity of cells. However, the existing scRNA-seq data are high-dimensional, sparse, and noisy, which challenges the existing single-cell clustering methods. In this study, we propose a joint learning framework (JLONMFSC) for clustering scRNA-seq data. In our method, the dimension of the original data is reduced to minimize the effect of noise. In addition, the graph regularized matrix factorization is used to learn the local features. Further, the Low-Rank Representation (LRR) subspace clustering is utilized to learn the global features. Finally, the joint learning of local features and global features is performed to obtain the results of clustering. We compare the proposed algorithm with eight state-of-the-art algorithms for clustering performance on six datasets, and the experimental results demonstrate that the JLONMFSC achieves better performance in all datasets. The code is avalable at https://github.com/lanbiolab/JLONMFSC.

摘要

单细胞 RNA 测序 (scRNA-seq) 的发展为在单细胞水平研究生物学问题提供了新的视角。scRNA-seq 数据分析中的一个关键问题是将细胞划分为几个簇,以发现细胞的异质性和多样性。然而,现有的 scRNA-seq 数据具有高维、稀疏和嘈杂的特点,这给现有的单细胞聚类方法带来了挑战。在本研究中,我们提出了一种用于聚类 scRNA-seq 数据的联合学习框架 (JLONMFSC)。在我们的方法中,通过降低原始数据的维度来最小化噪声的影响。此外,还使用图正则化矩阵分解来学习局部特征。进一步,利用低秩表示 (LRR) 子空间聚类来学习全局特征。最后,通过联合学习局部特征和全局特征来获得聚类结果。我们将所提出的算法与八种最先进的聚类算法在六个数据集上的聚类性能进行了比较,实验结果表明,JLONMFSC 在所有数据集上都取得了更好的性能。代码可在 https://github.com/lanbiolab/JLONMFSC 上获取。

相似文献

[1]
JLONMFSC: Clustering scRNA-seq data based on joint learning of non-negative matrix factorization and subspace clustering.

Methods. 2024-2

[2]
A Personalized Low-Rank Subspace Clustering Method Based on Locality and Similarity Constraints for scRNA-seq Data Analysis.

IEEE J Biomed Health Inform. 2023-5

[3]
Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data.

Brief Bioinform. 2023-7-20

[4]
scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data.

PLoS Comput Biol. 2022-12

[5]
Graph contrastive learning as a versatile foundation for advanced scRNA-seq data analysis.

Brief Bioinform. 2024-9-23

[6]
SSNMDI: a novel joint learning model of semi-supervised non-negative matrix factorization and data imputation for clustering of single-cell RNA-seq data.

Brief Bioinform. 2023-5-19

[7]
Multi-View Clustering With Graph Learning for scRNA-Seq Data.

IEEE/ACM Trans Comput Biol Bioinform. 2023

[8]
Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.

Brief Bioinform. 2022-5-13

[9]
Combining Global-Constrained Concept Factorization and a Regularized Gaussian Graphical Model for Clustering Single-Cell RNA-seq Data.

Interdiscip Sci. 2024-3

[10]
Unsupervised Cluster Analysis and Gene Marker Extraction of scRNA-seq Data Based On Non-Negative Matrix Factorization.

IEEE J Biomed Health Inform. 2022-1

引用本文的文献

[1]
scAGCI: an anchor graph-based method for cell clustering from integrated scRNA-seq and scATAC-seq data.

Brief Bioinform. 2025-7-2

[2]
Securing diagonal integration of multimodal single-cell data against ambiguous mapping.

Bioinformatics. 2025-6-2

[3]
scRSSL: Residual semi-supervised learning with deep generative models to automatically identify cell types.

IET Syst Biol. 2025

[4]
Graph contrastive learning of subcellular-resolution spatial transcriptomics improves cell type annotation and reveals critical molecular pathways.

Brief Bioinform. 2024-11-22

[5]
scMoMtF: An interpretable multitask learning framework for single-cell multi-omics data analysis.

PLoS Comput Biol. 2024-12-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索