Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114.
Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4558-4566. doi: 10.1073/pnas.1815515116. Epub 2019 Jan 30.
Metastatic breast cancers (mBCs) are largely resistant to immune checkpoint blockade, but the mechanisms remain unclear. Primary breast cancers are characterized by a dense fibrotic stroma, which is considered immunosuppressive in multiple malignancies, but the stromal composition of breast cancer metastases and its role in immunosuppression are largely unknown. Here we show that liver and lung metastases of human breast cancers tend to be highly fibrotic, and unlike primary breast tumors, they exclude cytotoxic T lymphocytes (CTLs). Unbiased analysis of the The Cancer Genome Atlas database of human breast tumors revealed a set of genes that are associated with stromal T-lymphocyte exclusion. Among these, we focused on as a relevant target based on its known roles in immunosuppression in other cancer types. We found that the CXCL12 receptor CXCR4 is highly expressed in both human primary tumors and metastases. To gain insight into the role of the CXCL12/CXCR4 axis, we inhibited CXCR4 signaling pharmacologically and found that plerixafor decreases fibrosis, alleviates solid stress, decompresses blood vessels, increases CTL infiltration, and decreases immunosuppression in murine mBC models. By deleting in αSMA cells, we confirmed that these immunosuppressive effects are dependent on CXCR4 signaling in αSMA cells, which include cancer-associated fibroblasts as well as other cells such as pericytes. Accordingly, CXCR4 inhibition more than doubles the response to immune checkpoint blockers in mice bearing mBCs. These findings demonstrate that CXCL12/CXCR4-mediated desmoplasia in mBC promotes immunosuppression and is a potential target for overcoming therapeutic resistance to immune checkpoint blockade in mBC patients.
转移性乳腺癌(mBC)对免疫检查点阻断有很大的抵抗力,但机制仍不清楚。原发性乳腺癌的特征是致密的纤维性基质,这在多种恶性肿瘤中被认为是免疫抑制性的,但乳腺癌转移的基质组成及其在免疫抑制中的作用在很大程度上是未知的。在这里,我们表明,人类乳腺癌的肝和肺转移往往是高度纤维化的,与原发性乳腺癌肿瘤不同,它们排斥细胞毒性 T 淋巴细胞(CTLs)。对人类乳腺癌肿瘤的癌症基因组图谱数据库进行的无偏分析揭示了一组与基质 T 淋巴细胞排斥相关的基因。在这些基因中,我们根据其在其他癌症类型中的免疫抑制作用,将 CXCL12 受体 CXCR4 作为一个相关靶点。我们发现,CXCL12 受体 CXCR4 在人类原发性肿瘤和转移瘤中均高度表达。为了深入了解 CXCL12/CXCR4 轴的作用,我们通过药理学抑制 CXCR4 信号通路,发现plerixafor 可减少纤维化、减轻实体瘤压力、扩张血管、增加 CTL 浸润,并降低小鼠 mBC 模型中的免疫抑制作用。通过在 αSMA 细胞中敲除 ,我们证实这些免疫抑制作用依赖于 αSMA 细胞中的 CXCR4 信号通路,其中包括癌症相关成纤维细胞以及其他细胞,如周细胞。因此,在携带 mBC 的小鼠中,CXCR4 抑制使对免疫检查点抑制剂的反应增加了一倍以上。这些发现表明,mBC 中 CXCL12/CXCR4 介导的纤维母细胞增生促进了免疫抑制,是克服 mBC 患者对免疫检查点阻断治疗耐药性的潜在靶点。