Suppr超能文献

使用全局和局部阈值化方法量化脉络膜毛细血管血流缺损:一项相关性研究。

Quantifying choriocapillaris flow deficits using global and localized thresholding methods: a correlation study.

作者信息

Chu Zhongdi, Zhang Qinqin, Zhou Hao, Shi Yingying, Zheng Fang, Gregori Giovanni, Rosenfeld Philip J, Wang Ruikang K

机构信息

Department of Bioengineering, University of Washington, Seattle, Washington, USA.

Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida, USA.

出版信息

Quant Imaging Med Surg. 2018 Dec;8(11):1102-1112. doi: 10.21037/qims.2018.12.09.

Abstract

BACKGROUND

To investigate the correlation and agreement of two previously published choriocapillaris (CC) quantification methods using a normal database with swept-source optical coherence tomography angiography (SS-OCTA).

METHODS

Normal adult subjects from all age groups imaged by SS-OCTA were used in this study. Each subject was imaged with 3 mm × 3 mm and 6 mm × 6 mm scan patterns centered on fovea, upon which en face CC images were generated by segmenting volumetric OCTA data. After signal compensation and removal of projection artifacts and noise, CC images were analyzed to identify flow deficits (FD) using two published methods. The first method utilized standard deviation from a young normal database (SD method) as the global thresholding while the second method utilized fuzzy C-means algorithm (FCM method) with local thresholding. Both methods segmented FDs from CC images and quantified FD density (FDD) and mean FD size (MFDS). In each 3 mm × 3 mm scan, three regions were quantified: a 1 mm circle (C), a 1.5 mm rim (R) and a 2.5 mm circle (C). In each 6 mm × 6 mm scan, five regions were quantified: C, R, C, a 2.5 mm rim (R) and a 5 mm circle (C). Spearman correlation and Bland-Altman plot analyses were conducted to compare the two methods.

RESULTS

Data obtained from 164 normal subjects (age: 56±19, 59% females) were used in this study. Strong correlations were observed between the two methods in all comparisons (r: 0.78-0.94, all P<0.0001). Overall MFDS provided higher or comparable correlation coefficients (r) compared to FDD. We have also observed stronger correlations in the central macula compared to parafoveal and perifoveal regions for both FDD and MFDS. In regions of C, R and C, 6 mm × 6 mm scans resulted in better agreement (smaller mean bias, similar or tighter limit of agreement) between the two methods for both FDD and MFDS compared to 3 mm × 3 mm scans.

CONCLUSIONS

There are strong correlations and satisfactory agreement between SD method and FCM method. SD method requires the reference to a normal database for CC quantification while FCM does not. Both methods could be used for the analysis of CC FDs in clinical settings depending on specific study designs such as the availability of a normal database.

摘要

背景

使用扫频光学相干断层扫描血管造影(SS-OCTA)的正常数据库,研究两种先前发表的脉络膜毛细血管(CC)量化方法的相关性和一致性。

方法

本研究使用了由SS-OCTA成像的各年龄组正常成人受试者。每个受试者以黄斑中心凹为中心,采用3mm×3mm和6mm×6mm的扫描模式进行成像,然后通过分割容积OCTA数据生成CC的正面图像。在进行信号补偿以及去除投影伪影和噪声后,使用两种已发表的方法对CC图像进行分析以识别血流缺损(FD)。第一种方法利用来自年轻正常数据库的标准差(SD方法)作为全局阈值,而第二种方法利用具有局部阈值的模糊C均值算法(FCM方法)。两种方法均从CC图像中分割出FD,并对FD密度(FDD)和平均FD大小(MFDS)进行量化。在每次3mm×3mm扫描中,对三个区域进行量化:一个1mm的圆(C)、一个1.5mm的边缘(R)和一个2.5mm的圆(C)。在每次6mm×6mm扫描中,对五个区域进行量化:C、R、C、一个2.5mm的边缘(R)和一个5mm的圆(C)。采用Spearman相关性分析和Bland-Altman图分析来比较这两种方法。

结果

本研究使用了从164名正常受试者(年龄:56±19岁,59%为女性)获得的数据。在所有比较中,两种方法之间均观察到强相关性(r:0.78 - 0.94,所有P<0.0001)。总体而言,与FDD相比,MFDS提供了更高或相当的相关系数(r)。我们还观察到,对于FDD和MFDS,黄斑中心区域的相关性比黄斑旁和黄斑周围区域更强。在C、R和C区域,与3mm×3mm扫描相比,6mm×6mm扫描在两种方法的FDD和MFDS之间产生了更好的一致性(平均偏差更小,一致性界限相似或更窄)。

结论

SD方法和FCM方法之间存在强相关性和令人满意的一致性。SD方法需要参考正常数据库进行CC量化,而FCM方法则不需要。根据具体的研究设计,如正常数据库的可用性,两种方法均可用于临床环境中CC血流缺损的分析。

相似文献

引用本文的文献

3
Segmentation of glioblastomas via 3D FusionNet.通过3D融合网络对胶质母细胞瘤进行分割
Front Oncol. 2024 Nov 15;14:1488616. doi: 10.3389/fonc.2024.1488616. eCollection 2024.

本文引用的文献

5
Swept-Source OCT Angiography of Serpiginous Choroiditis.匐行性脉络膜炎的扫频源光学相干断层扫描血管造影
Ophthalmol Retina. 2018 Jul;2(7):712-719. doi: 10.1016/j.oret.2017.11.001. Epub 2017 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验