Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD.
Seccio de Química Orgànica, Departament de Química Inorganica i Organica, Universitat de Barcelona, Barcelona, Spain.
Photochem Photobiol. 2019 Jul;95(4):951-958. doi: 10.1111/php.13090. Epub 2019 Mar 19.
Uncaging strategies that use near-infrared wavelengths can enable the highly targeted delivery of biomolecules in complex settings. Many methods, including an approach we developed using cyanine photooxidation, are limited to phenol-containing payloads. Given the critical role of amines in diverse biological processes, we sought to use cyanine photooxidation to initiate the release of aryl amines. Heptamethine cyanines substituted with an aryl amine at the C4' position undergo only inefficient release, likely due electronic factors. We then pursued the hypothesis that the carbonyl products derived from cyanine photooxidation could undergo efficient β-elimination. After examining both symmetrical and unsymmetrical scaffolds, we identify a merocyanine substituted with indolenine and coumarin heterocycles that undergoes efficient photooxidation and aniline uncaging. In total, these studies provide a new scheme-cyanine photooxidation followed by β-elimination-through which to design photocages with efficient uncaging properties.
解笼策略使用近红外波长,可以实现生物分子在复杂环境中的高度靶向传递。许多方法,包括我们使用花菁光氧化开发的方法,仅限于含酚的有效载荷。鉴于胺在各种生物过程中的关键作用,我们试图使用花菁光氧化来引发芳基胺的释放。在 C4' 位置取代芳基胺的庚烷花菁仅经历低效释放,这可能是由于电子因素。然后,我们提出了一个假设,即花菁光氧化衍生的羰基产物可以经历有效的β-消除。在检查了对称和不对称支架之后,我们确定了一个用吲哚啉和香豆素杂环取代的次甲花菁,它经历了有效的光氧化和苯胺解笼。总的来说,这些研究提供了一种新的方案——花菁光氧化,然后是β-消除——通过该方案可以设计具有高效解笼特性的光笼。