Suppr超能文献

半锁定四硫富瓦烯作为空穴传输材料的构建单元:迈向高效稳定的钙钛矿太阳能电池

Semi-Locked Tetrathienylethene as a Building Block for Hole-Transporting Materials: Toward Efficient and Stable Perovskite Solar Cells.

作者信息

Shen Chao, Wu Yongzhen, Zhang Hao, Li Erpeng, Zhang Weiwei, Xu Xiaojia, Wu Wenjun, Tian He, Zhu Wei-Hong

机构信息

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Centre, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.

出版信息

Angew Chem Int Ed Engl. 2019 Mar 18;58(12):3784-3789. doi: 10.1002/anie.201811593. Epub 2019 Feb 18.

Abstract

The construction of state-of-the-art hole-transporting materials (HTMs) is challenging regarding the appropriate molecular configuration for simultaneously achieving high morphology uniformity and charge mobility, especially because of the lack of appropriate building blocks. Herein a semi-locked tetrathienylethene (TTE) serves as a promising building block for HTMs by fine-tuning molecular planarity. Upon incorporation of four triphenylamine groups, the resulting TTE represents the first hybrid orthogonal and planar conformation, thus leading to the desirable electronic and morphological properties in perovskite solar cells (PSCs). Owing to its high hole mobility, deep lying HOMO level, and excellent thin film quality, the dopant-free TTE-based PSCs exhibit a very promising efficiency of over 20 % with long-term stability, achieving to date the best performances among dopant-free HTM-based planar n-i-p structured PSCs.

摘要

对于最先进的空穴传输材料(HTMs)而言,要构建出能同时实现高形态均匀性和电荷迁移率的合适分子构型颇具挑战,特别是由于缺乏合适的结构单元。在此,一种半锁定的四噻吩乙烯(TTE)通过微调分子平面性,成为了HTMs颇具潜力的结构单元。引入四个三苯胺基团后,所得的TTE呈现出首个杂化正交且平面的构象,进而在钙钛矿太阳能电池(PSCs)中产生了理想的电子和形态特性。由于其高空穴迁移率、较深的最高占据分子轨道(HOMO)能级以及优异的薄膜质量,不含掺杂剂的基于TTE的PSCs展现出超过20%的极具潜力的效率以及长期稳定性,在不含掺杂剂的基于HTM的平面n-i-p结构PSCs中,迄今实现了最佳性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验