Suppr超能文献

高级视觉皮层对表象和感知的动态贡献。

The dynamic contribution of the high-level visual cortex to imagery and perception.

机构信息

Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.

Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.

出版信息

Hum Brain Mapp. 2019 Jun 1;40(8):2449-2463. doi: 10.1002/hbm.24535. Epub 2019 Jan 31.

Abstract

Mental imagery and visual perception rely on the same content-dependent brain areas in the high-level visual cortex (HVC). However, little is known about dynamic mechanisms in these areas during imagery and perception. Here we disentangled local and inter-regional dynamic mechanisms underlying imagery and perception in the HVC and the hippocampus (HC), a key region for memory retrieval during imagery. Nineteen healthy participants watched or imagined a familiar scene or face during fMRI acquisition. The neural code for familiar landmarks and faces was distributed across the HVC and the HC, although with a different representational structure, and generalized across imagery and perception. However, different regional adaptation effects and inter-regional functional couplings were detected for faces and landmarks during imagery and perception. The left PPA showed opposite adaptation effects, with activity suppression following repeated observation of landmarks, but enhancement following repeated imagery of landmarks. Also, functional coupling between content-dependent brain areas of the HVC and HC changed as a function of task and content. These findings provide important information about the dynamic networks underlying imagery and perception in the HVC and shed some light upon the thin line between imagery and perception which has characterized the neuropsychological debates on mental imagery.

摘要

表象和视觉感知依赖于高级视觉皮层(HVC)中相同的内容相关脑区。然而,对于表象和感知过程中这些区域的动态机制知之甚少。在这里,我们分离了表象和感知过程中 HVC 和海马体(HC)的局部和区域间动态机制,海马体是表象过程中记忆检索的关键区域。19 名健康参与者在 fMRI 采集期间观看或想象一个熟悉的场景或面孔。尽管代表结构不同,但熟悉地标和面孔的神经编码分布在 HVC 和 HC 中,并在表象和感知中具有通用性。然而,在表象和感知过程中,面孔和地标会检测到不同的区域适应效应和区域间功能耦合。左侧 PPA 表现出相反的适应效应,地标重复观察后活动抑制,但地标重复表象后活动增强。此外,HVC 和 HC 的内容相关脑区之间的功能耦合随任务和内容而变化。这些发现为 HVC 中表象和感知的动态网络提供了重要信息,并为神经心理学关于表象的争论中表象和感知之间的细微界限提供了一些启示。

相似文献

1
The dynamic contribution of the high-level visual cortex to imagery and perception.
Hum Brain Mapp. 2019 Jun 1;40(8):2449-2463. doi: 10.1002/hbm.24535. Epub 2019 Jan 31.
2
I can see where you would be: Patterns of fMRI activity reveal imagined landmarks.
Neuroimage. 2017 Jan 1;144(Pt A):174-182. doi: 10.1016/j.neuroimage.2016.08.034. Epub 2016 Aug 20.
3
Distributed neural systems for the generation of visual images.
Neuron. 2000 Dec;28(3):979-90. doi: 10.1016/s0896-6273(00)00168-9.
4
Preferential signal pathways during the perception and imagery of familiar scenes: An effective connectivity study.
Hum Brain Mapp. 2023 Jul;44(10):3954-3971. doi: 10.1002/hbm.26313. Epub 2023 May 23.
5
Visual imagery during real-time fMRI neurofeedback from occipital and superior parietal cortex.
Neuroimage. 2019 Oct 15;200:332-343. doi: 10.1016/j.neuroimage.2019.06.057. Epub 2019 Jun 25.
6
Visual imagery of famous faces: effects of memory and attention revealed by fMRI.
Neuroimage. 2002 Dec;17(4):1729-41. doi: 10.1006/nimg.2002.1330.
7
Attentional modulation of background connectivity between ventral visual cortex and the medial temporal lobe.
Neurobiol Learn Mem. 2016 Oct;134 Pt A(Pt A):115-122. doi: 10.1016/j.nlm.2016.06.011. Epub 2016 Jun 15.
8
Regulation of brain activity in the fusiform face and parahippocampal place areas in 7-11-year-old children.
Brain Cogn. 2013 Mar;81(2):203-14. doi: 10.1016/j.bandc.2012.11.003. Epub 2012 Dec 20.
9
Neural response to the visual familiarity of faces.
Brain Res Bull. 2006 Dec 11;71(1-3):76-82. doi: 10.1016/j.brainresbull.2006.08.003. Epub 2006 Aug 31.
10
Neural representations underlying mental imagery as unveiled by representation similarity analysis.
Brain Struct Funct. 2021 Jun;226(5):1511-1531. doi: 10.1007/s00429-021-02266-z. Epub 2021 Apr 5.

引用本文的文献

2
Embodiment and gestural realization of ergative verbs.
Psychol Res. 2024 Apr;88(3):762-772. doi: 10.1007/s00426-023-01887-9. Epub 2023 Oct 25.
3
A Review of Studies Supporting Metaphorical Embodiment.
Behav Sci (Basel). 2023 Jul 13;13(7):585. doi: 10.3390/bs13070585.
4
Preferential signal pathways during the perception and imagery of familiar scenes: An effective connectivity study.
Hum Brain Mapp. 2023 Jul;44(10):3954-3971. doi: 10.1002/hbm.26313. Epub 2023 May 23.
5
A network linking scene perception and spatial memory systems in posterior cerebral cortex.
Nat Commun. 2021 May 11;12(1):2632. doi: 10.1038/s41467-021-22848-z.
6
Neural representations underlying mental imagery as unveiled by representation similarity analysis.
Brain Struct Funct. 2021 Jun;226(5):1511-1531. doi: 10.1007/s00429-021-02266-z. Epub 2021 Apr 5.
7
The Effect of Virtual Reality Technology on the Imagery Skills and Performance of Target-Based Sports Athletes.
Front Psychol. 2021 Jan 22;11:2073. doi: 10.3389/fpsyg.2020.02073. eCollection 2020.
8
9
A common neural substrate for processing scenes and egomotion-compatible visual motion.
Brain Struct Funct. 2020 Sep;225(7):2091-2110. doi: 10.1007/s00429-020-02112-8. Epub 2020 Jul 9.
10
Travel Planning Ability in Right Brain-Damaged Patients: Two Case Reports.
Front Hum Neurosci. 2020 Mar 31;14:117. doi: 10.3389/fnhum.2020.00117. eCollection 2020.

本文引用的文献

1
Evidence of taxonomy for Developmental Topographical Disorientation: Developmental Landmark Agnosia Case 1.
Appl Neuropsychol Child. 2019 Apr-Jun;8(2):187-198. doi: 10.1080/21622965.2017.1401477. Epub 2017 Dec 1.
2
The blind mind: No sensory visual imagery in aphantasia.
Cortex. 2018 Aug;105:53-60. doi: 10.1016/j.cortex.2017.10.012. Epub 2017 Oct 28.
3
Visual working memory performance in aphantasia.
Cortex. 2018 Aug;105:61-73. doi: 10.1016/j.cortex.2017.10.014. Epub 2017 Nov 8.
4
(A)phantasia and severely deficient autobiographical memory: Scientific and personal perspectives.
Cortex. 2018 Aug;105:41-52. doi: 10.1016/j.cortex.2017.10.010. Epub 2017 Nov 7.
5
The neural correlates of visual imagery vividness - An fMRI study and literature review.
Cortex. 2018 Aug;105:26-40. doi: 10.1016/j.cortex.2017.09.014. Epub 2017 Oct 3.
6
Distinct Top-down and Bottom-up Brain Connectivity During Visual Perception and Imagery.
Sci Rep. 2017 Jul 18;7(1):5677. doi: 10.1038/s41598-017-05888-8.
7
Topographic processing in developmental prosopagnosia: Preserved perception but impaired memory of scenes.
Cogn Neuropsychol. 2016 Oct-Dec;33(7-8):405-413. doi: 10.1080/02643294.2016.1267000. Epub 2016 Dec 30.
8
Direct and indirect parieto-medial temporal pathways for spatial navigation in humans: evidence from resting-state functional connectivity.
Brain Struct Funct. 2017 May;222(4):1945-1957. doi: 10.1007/s00429-016-1318-6. Epub 2016 Oct 4.
9
I can see where you would be: Patterns of fMRI activity reveal imagined landmarks.
Neuroimage. 2017 Jan 1;144(Pt A):174-182. doi: 10.1016/j.neuroimage.2016.08.034. Epub 2016 Aug 20.
10
Getting lost: Topographic skills in acquired and developmental prosopagnosia.
Cortex. 2016 Mar;76:89-103. doi: 10.1016/j.cortex.2016.01.003. Epub 2016 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验