Institut für Angewandte Physik , Universität Tübingen , Auf der Morgenstelle 10 , 72076 Tübingen , Germany.
European Synchrotron Radiation Facility , 71 Avenue des Martyrs , 38043 Grenoble Cedex 9 , France.
J Phys Chem B. 2019 Mar 7;123(9):1913-1919. doi: 10.1021/acs.jpcb.8b10725. Epub 2019 Feb 20.
Liquid-liquid phase separation (LLPS) in protein systems is relevant for many phenomena, from protein condensation diseases to subcellular organization to possible pathways toward protein crystallization. Understanding and controlling LLPS in proteins is therefore highly relevant for various areas of (biological) soft matter research. Solutions of the protein bovine serum albumin (BSA) have been shown to have a lower critical solution temperature-LLPS (LCST-LLPS) induceable by multivalent salts. Importantly, the nature of the multivalent cation used influences the LCST-LLPS in such systems. Here, we present a systematic ultrasmall-angle X-ray scattering investigation of the kinetics of LCST-LLPS of BSA in the presence of different mixtures of HoCl and LaCl, resulting in different effective interprotein attraction strengths. We monitor the characteristic length scales ξ( t, T) after inducing LLPS by subjecting the respective systems to temperature jumps in their liquid-liquid coexistence regions. With increasing interprotein attraction and increasing T, we observe an increasing deviation from the growth law of ξ ∼ t and an increased trend toward arrest. We thus establish a multidimensional method to tune phase transitions in our systems. Our findings help shed light on general questions regarding LLPS and the tunability of its kinetics in both proteins and colloidal systems.
蛋白质体系中的液-液相分离(LLPS)与许多现象有关,从蛋白质凝聚疾病到亚细胞组织到可能的蛋白质结晶途径。因此,理解和控制蛋白质中的 LLPS 对于(生物)软物质研究的各个领域都非常重要。已经表明,蛋白质牛血清白蛋白(BSA)的溶液具有可被多价盐诱导的低临界溶液温度-LLPS(LCST-LLPS)。重要的是,所使用的多价阳离子的性质会影响此类系统中的 LCST-LLPS。在这里,我们对不同比例的 HoCl 和 LaCl 存在下 BSA 的 LCST-LLPS 动力学进行了系统的超小角 X 射线散射研究,这导致了不同的有效蛋白质间吸引力。通过在它们的液-液相共存区域中对各自的系统进行温度跳跃,我们监测了诱导 LLPS 后的特征长度尺度 ξ( t, T)。随着蛋白质间吸引力的增加和 T 的增加,我们观察到 ξ∼ t 的增长规律的偏差越来越大,并且向停滞的趋势增加。因此,我们建立了一种多维方法来调节我们系统中的相转变。我们的发现有助于阐明关于 LLPS 及其在蛋白质和胶体系统中的动力学可调性的一般问题。