Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
Department Physik, Universität Siegen, Emmy-Noether-Campus, Walter-Flex-Strasse 3, 57072 Siegen, Germany.
J Phys Chem Lett. 2021 Aug 5;12(30):7085-7090. doi: 10.1021/acs.jpclett.1c01940. Epub 2021 Jul 22.
Microscopic dynamics of complex fluids in the early stage of spinodal decomposition (SD) is strongly intertwined with the kinetics of structural evolution, which makes a quantitative characterization challenging. In this work, we use X-ray photon correlation spectroscopy to study the dynamics and kinetics of a protein solution undergoing liquid-liquid phase separation (LLPS). We demonstrate that in the early stage of SD, the kinetics relaxation is up to 40 times slower than the dynamics and thus can be decoupled. The microscopic dynamics can be well described by hyper-diffusive ballistic motions with a relaxation time exponentially growing with time in the early stage followed by a power-law increase with fluctuations. These experimental results are further supported by simulations based on the Cahn-Hilliard equation. The established framework is applicable to other condensed matter and biological systems undergoing phase transitions and may also inspire further theoretical work.
在旋节分解(SD)的早期阶段,复杂流体的微观动力学与结构演化的动力学紧密交织,这使得定量描述具有挑战性。在这项工作中,我们使用 X 射线光子相关光谱法研究了经历液-液相分离(LLPS)的蛋白质溶液的动力学和动力学。我们证明,在 SD 的早期阶段,动力学弛豫比动力学慢 40 倍,因此可以解耦。微观动力学可以用具有随时间指数增长的弛豫时间的超扩散弹道运动很好地描述,在早期之后,随着波动呈幂律增加。这些实验结果得到了基于 Cahn-Hilliard 方程的模拟的进一步支持。所建立的框架适用于经历相变的其他凝聚态物质和生物系统,也可能激发进一步的理论工作。