Suppr超能文献

利用设备-动脉耦联来确定心脏和血管状态。

Leveraging Device-Arterial Coupling to Determine Cardiac and Vascular State.

出版信息

IEEE Trans Biomed Eng. 2019 Oct;66(10):2800-2808. doi: 10.1109/TBME.2019.2895752. Epub 2019 Jan 28.

Abstract

OBJECTIVE

Limitations in available diagnostic metrics restrict the efficacy of managing therapies for cardiogenic shock. In current clinical practice, cardiovascular state is inferred through measurement of pulmonary capillary wedge pressure and reliance on linear approximations between pressure and flow to estimate peripheral vascular resistance. Mechanical circulatory support devices residing within the left ventricle and aorta provide an opportunity for both determining cardiac and vascular state and offering therapeutic benefit. We leverage the controllable mode of operation and transvalvular position of an indwelling percutaneous ventricular assist device to assess vascular and, in turn, cardiac state through the effects of device-arterial coupling across different levels of device support.

METHODS

Vascular state is determined by measuring changes in the pressure waveforms induced through intentional variation in the device generated blood flow. We evaluate this impact by applying a lumped parameter model to quantify state-specific vascular resistance and compliance and calculate beat-to-beat stroke volume and cardiac output in both animal models and retrospective patient data without external calibration.

RESULTS

Vascular state was accurately predicted in patients and animals in both baseline and experimental conditions. In the animal, stroke volume was predicted within a total root mean square error of 3.71 mL (n = 482).

CONCLUSION

We demonstrate that device-arterial coupling is a powerful tool for evaluating patient and state specific parameters of cardiovascular function.

SIGNIFICANCE

These insights may yield improved clinical care and support the development of next generation mechanical circulatory support devices that determine and operate in tandem with the supported organ.

摘要

目的

现有诊断指标的局限性限制了对心源性休克治疗方法的疗效评估。在当前的临床实践中,心血管状态是通过测量肺毛细血管楔压和依赖压力与流量之间的线性近似值来估计外周血管阻力来推断的。位于左心室和主动脉内的机械循环支持装置为确定心脏和血管状态并提供治疗益处提供了机会。我们利用留置经皮心室辅助装置的可控操作模式和跨瓣位置,通过在不同水平的装置支持下评估装置-动脉耦联对血管的影响,从而评估血管状态,进而评估心脏状态。

方法

通过测量通过有意改变装置产生的血流量引起的压力波形变化来确定血管状态。我们通过应用集总参数模型来量化特定状态下的血管阻力和顺应性,并在没有外部校准的情况下计算动物模型和回顾性患者数据中的每搏量和心输出量,从而评估这种影响。

结果

在基线和实验条件下,患者和动物的血管状态都得到了准确预测。在动物中,每搏量的预测总均方根误差为 3.71 毫升(n = 482)。

结论

我们证明了装置-动脉耦联是评估患者和特定状态下心血管功能参数的有力工具。

意义

这些见解可能会改善临床护理,并支持开发能够确定和与支持器官协同工作的下一代机械循环支持装置。

相似文献

1
Leveraging Device-Arterial Coupling to Determine Cardiac and Vascular State.
IEEE Trans Biomed Eng. 2019 Oct;66(10):2800-2808. doi: 10.1109/TBME.2019.2895752. Epub 2019 Jan 28.
2
Dynamic Modulation of Device-Arterial Coupling to Determine Cardiac Output and Vascular Resistance.
Ann Biomed Eng. 2020 Sep;48(9):2333-2342. doi: 10.1007/s10439-020-02510-3. Epub 2020 Apr 13.
3
Bridge to durable left ventricular assist device for refractory cardiogenic shock.
J Thorac Cardiovasc Surg. 2017 Apr;153(4):752-762.e5. doi: 10.1016/j.jtcvs.2016.10.085. Epub 2016 Nov 16.
4
Hemodynamic disorders related to beating heart surgery using cardiac stabilizers: experimental study.
Rev Bras Cir Cardiovasc. 2007 Oct-Dec;22(4):407-15. doi: 10.1590/s0102-76382007000400006.
6
Modeling of Virtual Mechanical Circulatory Hemodynamics for Biventricular Heart Failure Support.
Cardiovasc Eng Technol. 2020 Dec;11(6):699-707. doi: 10.1007/s13239-020-00501-y. Epub 2020 Nov 19.

引用本文的文献

4
A Scalable Approach to Determine Intracardiac Pressure From Mechanical Circulatory Support Device Signals.
IEEE Trans Biomed Eng. 2021 Mar;68(3):905-913. doi: 10.1109/TBME.2020.3016220. Epub 2021 Feb 18.
5
Dynamic Modulation of Device-Arterial Coupling to Determine Cardiac Output and Vascular Resistance.
Ann Biomed Eng. 2020 Sep;48(9):2333-2342. doi: 10.1007/s10439-020-02510-3. Epub 2020 Apr 13.

本文引用的文献

2
Bridging the gap between measurements and modelling: a cardiovascular functional avatar.
Sci Rep. 2017 Jul 24;7(1):6214. doi: 10.1038/s41598-017-06339-0.
3
Exercise physiology with a left ventricular assist device: Analysis of heart-pump interaction with a computational simulator.
PLoS One. 2017 Jul 24;12(7):e0181879. doi: 10.1371/journal.pone.0181879. eCollection 2017.
4
National Trends in Use and Outcomes of Pulmonary Artery Catheters Among Medicare Beneficiaries, 1999-2013.
JAMA Cardiol. 2017 Aug 1;2(8):908-913. doi: 10.1001/jamacardio.2017.1670.
5
Temporary Mechanical Circulatory Support in Cardiac Critical Care: A State of the Art Review and Algorithm for Device Selection.
Can J Cardiol. 2017 Jan;33(1):110-118. doi: 10.1016/j.cjca.2016.10.023. Epub 2016 Oct 28.
6
Percutaneous Mechanical Circulatory Support Versus Intra-Aortic Balloon Pump in Cardiogenic Shock After Acute Myocardial Infarction.
J Am Coll Cardiol. 2017 Jan 24;69(3):278-287. doi: 10.1016/j.jacc.2016.10.022. Epub 2016 Oct 31.
7
Model-based cardiovascular disease diagnosis: a preliminary in-silico study.
Biomech Model Mechanobiol. 2017 Apr;16(2):549-560. doi: 10.1007/s10237-016-0836-8. Epub 2016 Sep 21.
8
Management of refractory cardiogenic shock.
Nat Rev Cardiol. 2016 Aug;13(8):481-92. doi: 10.1038/nrcardio.2016.96. Epub 2016 Jun 30.
9
Cardiogenic Shock in Acute Myocardial Infarction: The Era of Mechanical Support.
J Am Coll Cardiol. 2016 Apr 26;67(16):1881-4. doi: 10.1016/j.jacc.2015.12.074.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验