Chang Brian Y, Moyer Christian, Katerji Ahmad El, Keller Steven P, Edelman Elazer R
IEEE Trans Biomed Eng. 2021 Mar;68(3):905-913. doi: 10.1109/TBME.2020.3016220. Epub 2021 Feb 18.
Effective mechanical circulatory support (MCS) relies on cardiac function measures to guide titration. Left ventricular end diastolic pressure (LVEDP) is a useful measure that is indirectly estimated using pulmonary artery catheters (PACs). PACs require additional intervention and provide intermittent and unreliable estimations. MCS device signals can estimate LVEDP but are prone to inter-device variability and require rigorous specialized characterization. We present a scalable and implementable approach to calculate LVEDP continuously using device signals.
LVEDP was calculated from MCS device measured aortic pressure and motor current, which approximates the pressure head between the aorta and left ventricle. This motor current-pressure head relationship is device-specific but approximated using existing flow calibration and assumed physiologic relationships. Performance was evaluated with comparison from direct measurement of LVEDP in a series of acute animal models.
LVEDP measures (n = 178,279) from 18 animals had good correlation (r = 0.84) and calibration (Bland-Altman limits of agreement -7.77 to 7.63 mmHg; mean bias -0.07 ± 0.02 mmHg). The total mean error prediction interval was -3.42 to 3.32 mmHg and RMS error was 3.85 mmHg.
LVEDP can be continuously calculated using device signals without specialized characterization. Calculated LVEDP values improved upon PAC estimations and were found using a scalable and manufacturer-accessible method.
This method improves upon existing LVEDP measures without the need for rigorous characterization, external calibration, or additional intervention; this allows widescale deployment of continuous LVEDP measurement for patients on MCS and demonstrates key considerations necessary to translate research-grade technologies.
有效的机械循环支持(MCS)依赖于心脏功能指标来指导滴定。左心室舒张末期压力(LVEDP)是一项有用的指标,可通过肺动脉导管(PAC)间接估算。PAC需要额外的干预,且提供的是间歇性和不可靠的估算值。MCS设备信号可估算LVEDP,但容易出现设备间的差异,且需要严格的专门特性描述。我们提出了一种可扩展且可实施的方法,利用设备信号连续计算LVEDP。
LVEDP由MCS设备测量的主动脉压力和电机电流计算得出,电机电流近似于主动脉和左心室之间的压力差。这种电机电流与压力差的关系因设备而异,但可利用现有的流量校准和假定的生理关系进行近似。在一系列急性动物模型中,通过与LVEDP的直接测量结果进行比较来评估性能。
来自18只动物的LVEDP测量值(n = 178,279)具有良好的相关性(r = 0.84)和校准效果(Bland-Altman一致性界限为-7.77至7.63 mmHg;平均偏差为-0.07±0.02 mmHg)。总平均误差预测区间为-3.42至3.32 mmHg,均方根误差为3.85 mmHg。
无需专门的特性描述,利用设备信号即可连续计算LVEDP。计算得出的LVEDP值优于PAC估算值,且是通过一种可扩展且制造商可获取的方法得出的。
该方法改进了现有的LVEDP测量方法,无需严格的特性描述、外部校准或额外干预;这使得在MCS患者中广泛应用连续LVEDP测量成为可能,并展示了将研究级技术转化应用所需的关键考虑因素。