Suppr超能文献

静息状态下青蛙缝匠肌中氧气的扩散与消耗

Diffusion and consumption of oxygen in the resting frog sartorius muscle.

作者信息

Mahler M

出版信息

J Gen Physiol. 1978 May;71(5):533-57. doi: 10.1085/jgp.71.5.533.

Abstract

Adaptations of the method of Takahashi et al. (1966. J. Gen. Physiol. 50:317-333) were used to test the validity of the one-dimensional diffusion equation for O2 in the resting excised frog sartorius muscle. This equation is: (formula: see text) where x is the distance perpendicular to the muscle surface. t is time, P(x, t) is the partial pressure of O2,D and alpha are the diffusion coefficient and solubility for O2 in the tissue, and Q is the rate of O2 consumption. P(O, t), the time-course of PO2 at one muscle surface, was measured by a micro-oxygen electrode. Transients in the PO2 profile of the muscle were induced by two methods: (a) after an equilibration period, one surface was sealed off by a disc in which the O2 electrode was embedded; (b) when PO2 at this surface reached a steady state, a step change was made in the PO2 at the other surface. With either method, the agreement between the measured P(O, t) and that predicted by the diffusion equation was excellent, making possible the calculation of D and Q. These two methods yielded statistically indistinguishable results, with the following pooled means (+/- SEM): (formula: see text) At each temperature, D was independent of muscle thickness (range, 0.67-1.34 mm). The activation energy (EA) for diffusion of oxygen in muscle was -3.85 kcal/mol, which closely matches the corresponding value in water. Together with absolute values of D in water taken from the literature, the present data imply that (Dmuscle/DH2O) is in the range 0.59-0.69. This value, and that of EA, are in agreement with the theory of Wang (1954, J. Am. Chem. Soc. 76:4755-4763), suggesting that with respects to the diffusion of O2, to a useful approximation, frog skeletal muscle may be considered simply as a homogeneous protein solution.

摘要

采用高桥等人(1966年,《普通生理学杂志》50:317 - 333)方法的改进形式,来检验一维扩散方程对静息离体青蛙缝匠肌中氧气的有效性。该方程为:(公式:见原文)其中x是垂直于肌肉表面的距离,t是时间,P(x, t)是氧气的分压,D和α分别是氧气在组织中的扩散系数和溶解度,Q是氧气消耗速率。通过微氧电极测量肌肉一个表面处PO₂随时间的变化过程P(O, t)。肌肉中PO₂分布的瞬态变化通过两种方法诱导:(a)在平衡期后,用嵌入氧电极的圆盘封闭一个表面;(b)当该表面的PO₂达到稳态时,在另一个表面的PO₂上进行阶跃变化。无论采用哪种方法,测量得到的P(O, t)与扩散方程预测的结果都非常吻合,从而能够计算D和Q。这两种方法产生的统计结果无显著差异,合并均值如下(±标准误):(公式:见原文)在每个温度下,D与肌肉厚度无关(范围为0.67 - 1.34毫米)。氧气在肌肉中扩散的活化能(EA)为 - 3.85千卡/摩尔,与水中的相应值非常接近。结合文献中水中D的绝对值,目前的数据表明(D肌肉/D水)在0.59 - 0.69范围内。这个值以及EA的值与王(1954年,《美国化学会志》76:4755 - 4763)的理论一致,表明就氧气扩散而言,在有用的近似范围内,青蛙骨骼肌可简单视为均匀的蛋白质溶液。

相似文献

1
Diffusion and consumption of oxygen in the resting frog sartorius muscle.
J Gen Physiol. 1978 May;71(5):533-57. doi: 10.1085/jgp.71.5.533.
5
A versatile model of steady state O2 supply to tissue. Application to skeletal muscle.
Biophys J. 1990 Mar;57(3):485-98. doi: 10.1016/S0006-3495(90)82565-0.
6
Aerobic recovery metabolism following a single isometric tetanus in frog sartorius muscle at 0 degrees C.
J Physiol. 1976 Jan;254(3):693-709. doi: 10.1113/jphysiol.1976.sp011253.
7
Heterogeneity of oxygen diffusion through hamster striated muscles.
Am J Physiol. 1984 Feb;246(2 Pt 2):H161-7. doi: 10.1152/ajpheart.1984.246.2.H161.
8
Theoretical analysis of oxygen supply to contracted skeletal muscle.
Adv Exp Med Biol. 1986;200:495-514. doi: 10.1007/978-1-4684-5188-7_62.
9
Relations among tissue PO2, QO2, and resting heat production of frog sartorius muscle.
Am J Physiol. 1968 Feb;214(2):277-86. doi: 10.1152/ajplegacy.1968.214.2.277.

引用本文的文献

1
Differential cell-matrix responses in hypoxia-stimulated aortic versus mitral valves.
J R Soc Interface. 2016 Dec;13(125). doi: 10.1098/rsif.2016.0449.
2
Modelling diffusive O(2) supply to isolated preparations of mammalian skeletal and cardiac muscle.
J Muscle Res Cell Motil. 2005;26(4-5):225-35. doi: 10.1007/s10974-005-9013-x. Epub 2005 Nov 9.
3
Slow skeletal muscles of the mouse have greater initial efficiency than fast muscles but the same net efficiency.
J Physiol. 2004 Sep 1;559(Pt 2):519-33. doi: 10.1113/jphysiol.2004.069096. Epub 2004 Jul 8.
6
Stretch-induced increase in resting metabolism of isolated papillary muscle.
Biophys J. 1982 May;38(2):185-94. doi: 10.1016/S0006-3495(82)84545-1.
7
Facilitated transport of oxygen in the presence of membranes in the diffusion path.
Biophys J. 1982 May;38(2):133-41. doi: 10.1016/S0006-3495(82)84540-2.
9
Local oxygen gradients near isolated mitochondria.
Biophys J. 1985 Dec;48(6):931-8. doi: 10.1016/S0006-3495(85)83856-X.
10
Luminal alkalinization in the intestine of the goby.
J Comp Physiol B. 1986;156(6):803-11. doi: 10.1007/BF00694254.

本文引用的文献

1
The time course of the oxygen consumption of stimulated frog's muscle.
J Physiol. 1940 May 14;98(2):207-27. doi: 10.1113/jphysiol.1940.sp003845.
2
The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion.
J Physiol. 1919 May 20;52(6):391-408. doi: 10.1113/jphysiol.1919.sp001838.
3
The total energy exchanges of intact cold-blooded animals at rest.
J Physiol. 1911 Dec 22;43(5):379-94. doi: 10.1113/jphysiol.1911.sp001480.
4
Oxygen tension and the respiration of resting frog's muscle.
J Physiol. 1948 Sep 30;107(4):479-95. doi: 10.1113/jphysiol.1948.sp004293.
5
PURIFIED MUSCLE PROTEINS AND THE WALKING RATE OF ANTS.
Proc Natl Acad Sci U S A. 1959 Jun;45(6):785-91. doi: 10.1073/pnas.45.6.785.
6
INFLUENCE OF OSMOTIC STRENGTH ON CROSS-SECTION AND VOLUME OF ISOLATED SINGLE MUSCLE FIBRES.
J Physiol. 1965 Mar;177(1):42-57. doi: 10.1113/jphysiol.1965.sp007574.
7
AN ULTRAMICRO OXYGEN ELECTRODE.
J Appl Physiol. 1964 Mar;19:326-9. doi: 10.1152/jappl.1964.19.2.326.
8
[Requirements for the oxygen supply of heart muscle tissue].
Pflugers Arch Gesamte Physiol Menschen Tiere. 1962;276:142-65.
9
The dimensions of the extracellular space in sartorius muscle.
J Gen Physiol. 1959 Sep;43(1):39-53. doi: 10.1085/jgp.43.1.39.
10
The effect of potassium on the resting metabolism of the frog's sartorius.
Proc R Soc Lond B Biol Sci. 1957 Aug 24;147(926):21-43. doi: 10.1098/rspb.1957.0034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验