Groebe K
Institut für Physiologie und Pathophysiologie, Johannes Gutenberg-Universität Mainz, West Germany.
Biophys J. 1990 Mar;57(3):485-98. doi: 10.1016/S0006-3495(90)82565-0.
A model of combined convective and diffusive O2 transport to tissue is suggested which allows for the calculation of PO2 distributions in a cuboid tissue region with arbitrary microvascular geometries and blood flows. Carrier-facilitated O2 diffusion in the erythrocytes and in the tissue and red blood cell reaction kinetics are considered. The model is based on analytical descriptions of the PO2 fields of single erythrocytes surrounded by carrier-free layers in an infinite three-dimensional space containing an O2 carrier such as myoglobin. These PO2 fields are overlaid to obtain a solution of the differential equation of diffusion in respiring tissue. The model has been applied to a situation in heavily working skeletal muscle. Resulting PO2 profiles exhibit steep peri-capillary PO2 gradients. Further into the fiber, the profiles are essentially flat at low PO2 levels in good agreement with experimental findings (Gayeski and Honig. 1986. Am. J. Physiol. 251:H789-H799). PO2 dependence of facilitation of O2 transport produces a "layer deficient of functional carrier" which extends into the muscle fiber and which represents a reserve of O2 conductance automatically recruited in exercise. Furthermore, it results in a homogenization of red blood cell O2 fluxes which accounts for the absence of PO2 gradients along the muscle fiber axis (cf. Gayeski and Honig. 1988. Am. J. Physiol. 254: H1179-H1186).
提出了一种对流与扩散相结合的氧气向组织传输的模型,该模型可用于计算具有任意微血管几何形状和血流的长方体组织区域中的氧分压分布。考虑了红细胞中载体介导的氧气扩散、组织中的扩散以及红细胞反应动力学。该模型基于对单个红细胞在含有诸如肌红蛋白等氧气载体的无限三维空间中被无载体层包围时的氧分压场的解析描述。这些氧分压场叠加起来以获得呼吸组织中扩散微分方程的解。该模型已应用于重度工作的骨骼肌情况。所得的氧分压分布显示出陡峭的毛细血管周围氧分压梯度。在纤维内部更深的地方,在低氧分压水平下分布基本平坦,这与实验结果(盖耶斯基和霍尼格,1986年,《美国生理学杂志》251卷:H789 - H799)非常吻合。氧气传输促进作用对氧分压的依赖性产生了一个延伸到肌纤维中的“功能性载体缺乏层”,它代表了运动时自动募集的氧气传导储备。此外,它导致红细胞氧气通量均匀化,这解释了沿肌纤维轴不存在氧分压梯度的现象(参见盖耶斯基和霍尼格,1988年,《美国生理学杂志》254卷:H1179 - H1186)。