Suppr超能文献

基于低秩稀疏压缩感知的质子共振频率偏移磁共振温度成像加速技术。

Low-rank plus sparse compressed sensing for accelerated proton resonance frequency shift MR temperature imaging.

机构信息

Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.

Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.

出版信息

Magn Reson Med. 2019 Jun;81(6):3555-3566. doi: 10.1002/mrm.27666. Epub 2019 Jan 31.

Abstract

PURPOSE

To improve multichannel compressed sensing (CS) reconstruction for MR proton resonance frequency (PRF) shift thermography, with application to MRI-induced RF heating evaluation and MR guided high intensity focused ultrasound (MRgFUS) temperature monitoring.

METHODS

A new compressed sensing reconstruction is proposed that enforces joint low rank and sparsity of complex difference domain PRF data between post heating and baseline images. Validations were performed on 4 retrospectively undersampled dynamic data sets in PRF applications, by comparing the proposed method to a previously described L and total variation- (TV-) based CS approach that also operates on complex difference domain data, and to a conventional low rank plus sparse (L+S) separation-based CS reconstruction applied to the original domain data.

RESULTS

In all 4 retrospective validations, the proposed reconstruction method outperformed the conventional L+S and L +TV CS reconstruction methods with a 3.6× acceleration ratio in terms of temperature accuracy with respect to fully sampled data. For RF heating evaluation, the proposed method achieved RMS error of 12%, compared to 19% for the L+S method and 17% for the L +TV method. For in vivo MRgFUS thalamotomy, the peak temperature reconstruction errors were 19%, 31%, and 35%, respectively.

CONCLUSION

The complex difference-based low rank and sparse model enhances compressibility for dynamic PRF temperature imaging applications. The proposed multichannel CS reconstruction method enables high acceleration factors for PRF applications including RF heating evaluation and MRgFUS sonication.

摘要

目的

改进磁共振质子共振频率(PRF)偏移热成像的多通道压缩感知(CS)重建,应用于 MRI 诱导的射频加热评估和磁共振引导高强度聚焦超声(MRgFUS)温度监测。

方法

提出了一种新的压缩感知重建方法,该方法强制对加热后和基线图像之间的复差异域 PRF 数据进行联合低秩和稀疏处理。在 4 个回顾性欠采样的 PRF 应用动态数据集上进行验证,将所提出的方法与先前描述的基于 L 和全变差(TV)的 CS 方法进行比较,该方法也作用于复差异域数据,以及应用于原始域数据的传统低秩加稀疏(L+S)分离 CS 重建。

结果

在所有 4 个回顾性验证中,所提出的重建方法在温度准确性方面优于传统的 L+S 和 L+TV CS 重建方法,在 3.6 倍的加速比下,与完全采样数据相比。对于 RF 加热评估,所提出的方法的均方根误差为 12%,而 L+S 方法为 19%,L+TV 方法为 17%。对于体内 MRgFUS 丘脑切开术,峰值温度重建误差分别为 19%、31%和 35%。

结论

基于复差异的低秩和稀疏模型增强了动态 PRF 温度成像应用的可压缩性。所提出的多通道 CS 重建方法可为 PRF 应用(包括 RF 加热评估和 MRgFUS 超声)提供高加速因子。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验