Suppr超能文献

用于从磁共振热成像计算平均比吸收率的热方程反演框架。

Heat equation inversion framework for average SAR calculation from magnetic resonance thermal imaging.

作者信息

Alon Leeor, Sodickson Daniel K, Deniz Cem M

机构信息

Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York City, New York.

The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York City, New York.

出版信息

Bioelectromagnetics. 2016 Oct;37(7):493-503. doi: 10.1002/bem.21996. Epub 2016 Aug 4.

Abstract

Deposition of radiofrequency (RF) energy can be quantified via electric field or temperature change measurements. Magnetic resonance imaging has been used as a tool to measure three dimensional small temperature changes associated with RF radiation exposure. When duration of RF exposure is long, conversion from temperature change to specific absorption rate (SAR) is nontrivial due to prominent heat-diffusion and conduction effects. In this work, we demonstrated a method for calculation of SAR via an inversion of the heat equation including heat-diffusion and conduction effects. This method utilizes high-resolution three dimensional magnetic resonance temperature images and measured thermal properties of the phantom to achieve accurate calculation of SAR. Accuracy of the proposed method was analyzed with respect to operating frequency of a dipole antenna and parameters used in heat equation inversion. Bioelectromagnetics. 37:493-503, 2016. © 2016 Wiley Periodicals, Inc.

摘要

射频(RF)能量的沉积可以通过电场或温度变化测量来量化。磁共振成像已被用作一种工具,用于测量与射频辐射暴露相关的三维微小温度变化。当射频暴露持续时间较长时,由于显著的热扩散和传导效应,从温度变化转换为比吸收率(SAR)并非易事。在这项工作中,我们展示了一种通过对包含热扩散和传导效应的热方程进行反演来计算比吸收率的方法。该方法利用高分辨率三维磁共振温度图像和所测量的体模热特性来实现比吸收率的精确计算。针对偶极天线的工作频率和热方程反演中使用的参数,对所提出方法的准确性进行了分析。《生物电磁学》。2016年,第37卷,第493 - 503页。© 2016威利期刊公司。

相似文献

1
Heat equation inversion framework for average SAR calculation from magnetic resonance thermal imaging.
Bioelectromagnetics. 2016 Oct;37(7):493-503. doi: 10.1002/bem.21996. Epub 2016 Aug 4.
2
A method for safety testing of radiofrequency/microwave-emitting devices using MRI.
Magn Reson Med. 2015 Nov;74(5):1397-405. doi: 10.1002/mrm.25521. Epub 2014 Nov 25.
3
7T MR Thermometry technique for validation of system-predicted SAR with a home-built radiofrequency wrist coil.
Med Phys. 2021 Feb;48(2):781-790. doi: 10.1002/mp.14641. Epub 2020 Dec 31.
5
Monitoring local heating around an interventional MRI antenna with RF radiometry.
Med Phys. 2015 Mar;42(3):1411-23. doi: 10.1118/1.4907960.
8
SAR Simulations & Safety.
Neuroimage. 2018 Mar;168:33-58. doi: 10.1016/j.neuroimage.2017.03.035. Epub 2017 Mar 20.
9
Wideband Self-Grounded Bow-Tie Antenna for Thermal MR.
NMR Biomed. 2020 May;33(5):e4274. doi: 10.1002/nbm.4274. Epub 2020 Feb 20.

引用本文的文献

1
Modeling and measurement of lead tip heating and resonant length for implanted, insulated wires.
Magn Reson Med. 2024 Oct;92(4):1714-1727. doi: 10.1002/mrm.30145. Epub 2024 May 31.
2
Neuronal activity under transcranial radio-frequency stimulation in metal-free rodent brains in-vivo.
Commun Eng. 2022;1. doi: 10.1038/s44172-022-00014-7. Epub 2022 Jul 1.
3
Brain-implanted conductors amplify radiofrequency fields in rodents: Advantages and risks.
Bioelectromagnetics. 2024 Apr;45(3):139-155. doi: 10.1002/bem.22489. Epub 2023 Oct 24.
4
In-vivo measurement of radio frequency electric fields in mice brain.
Biosens Bioelectron X. 2023 Sep;14. doi: 10.1016/j.biosx.2023.100328. Epub 2023 Mar 11.
5
Progress in Imaging the Human Torso at the Ultrahigh Fields of 7 and 10.5 T.
Magn Reson Imaging Clin N Am. 2021 Feb;29(1):e1-e19. doi: 10.1016/j.mric.2020.10.001.
7
Evolution of UHF Body Imaging in the Human Torso at 7T: Technology, Applications, and Future Directions.
Top Magn Reson Imaging. 2019 Jun;28(3):101-124. doi: 10.1097/RMR.0000000000000202.
8
Low-rank plus sparse compressed sensing for accelerated proton resonance frequency shift MR temperature imaging.
Magn Reson Med. 2019 Jun;81(6):3555-3566. doi: 10.1002/mrm.27666. Epub 2019 Jan 31.

本文引用的文献

1
A method for safety testing of radiofrequency/microwave-emitting devices using MRI.
Magn Reson Med. 2015 Nov;74(5):1397-405. doi: 10.1002/mrm.25521. Epub 2014 Nov 25.
2
NMR imaging of cell phone radiation absorption in brain tissue.
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):58-63. doi: 10.1073/pnas.1205598109. Epub 2012 Dec 17.
3
Towards fast and accurate temperature mapping with proton resonance frequency-based MR thermometry.
Quant Imaging Med Surg. 2012;2(1):21-32. doi: 10.3978/j.issn.2223-4292.2012.01.06.
4
Reweighted ℓ1 referenceless PRF shift thermometry.
Magn Reson Med. 2010 Oct;64(4):1068-77. doi: 10.1002/mrm.22502.
5
Accuracy of real-time MR temperature mapping in the brain: a comparison of fast sequences.
Phys Med. 2010 Oct;26(4):192-201. doi: 10.1016/j.ejmp.2009.11.006. Epub 2010 Jan 21.
7
Measurement of heat transfer coefficients by nuclear magnetic resonance.
Magn Reson Imaging. 2008 Nov;26(9):1323-8. doi: 10.1016/j.mri.2008.04.006. Epub 2008 Jun 3.
8
MR thermometry.
J Magn Reson Imaging. 2008 Feb;27(2):376-90. doi: 10.1002/jmri.21265.
9
SAR and temperature: simulations and comparison to regulatory limits for MRI.
J Magn Reson Imaging. 2007 Aug;26(2):437-41. doi: 10.1002/jmri.20977.
10
Measurement of thermal diffusivity by magnetic resonance imaging.
Magn Reson Imaging. 2006 Nov;24(9):1203-7. doi: 10.1016/j.mri.2006.03.014. Epub 2006 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验