The Ohio State Wexner Medical Centre, Dorothy M. Davis Heart & Lung Research Institute, Columbus, OH, USA.
Vanderbilt Centre for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Nashville, TN, USA.
J Physiol. 2020 Jul;598(14):2835-2846. doi: 10.1113/JP277553. Epub 2019 Mar 4.
Modification of voltage-gated Na channel (Na ) function by intracellular Ca has been a topic of much controversy. Early studies relied on measuring Na function in the absence or presence of intracellular Ca , and generated seemingly disparate results. Subsequent investigations revealed the mechanism(s) of Ca -driven Na modulation are complex and involve multiple accessory proteins. The Ca -sensing protein calmodulin (CaM) has a central role in tuning Na function to [Ca ] , but the mechanism has been obscured by other proteins (such as fibroblast growth factors (FGF) or CaM-dependent kinase II (CaMKII)) that can also modify channel function or exert an influence in a Ca -dependent manner. Significant progress has been made in understanding the architecture of full-length ion channels and the structural and biophysical details of Na -accessory protein interactions. Interdisciplinary structure-function studies are beginning to resolve the effect each interaction has on Na gating. Carefully designed structure-guided or strategically selected disease-associated mutations are able to impair Na -accessory protein interactions without altering other properties of channel function. Recently CaM was found to engage part of Na 1.5 that is required for channel inactivation with high affinity. Careful impairment of this interaction disrupted Na 1.5's ability to recover from inactivation. Such results support a paradigm of CaM-facilitated recovery from inactivation (CFRI). How Na -CaM, CaMKII and FGF/fibroblast growth factor homologous factor interactions affect the timing or function of CFRI in cardiomyocytes remain open questions that are discussed herein. Moreover whether CFRI dysfunction or premature activation underlie certain Na channelopathies are important questions that will require further investigation.
电压门控钠通道(Na+)功能的细胞内 Ca2+调节一直是一个备受争议的话题。早期的研究依赖于在缺乏或存在细胞内 Ca2+的情况下测量 Na+功能,产生了看似截然不同的结果。随后的研究揭示了 Ca2+驱动的 Na+调制的机制非常复杂,涉及多种辅助蛋白。钙敏感受体钙调蛋白(CaM)在调节 Na+功能对 [Ca2+]方面起着核心作用,但该机制被其他蛋白(如成纤维细胞生长因子(FGF)或 CaM 依赖性激酶 II(CaMKII))所掩盖,这些蛋白也可以修饰通道功能或以 Ca2+依赖性方式发挥作用。在理解全长离子通道的结构以及 Na+辅助蛋白相互作用的结构和生物物理细节方面已经取得了重大进展。跨学科的结构-功能研究开始解决每个相互作用对 Na+门控的影响。精心设计的结构导向或有策略地选择与疾病相关的突变能够损害 Na+辅助蛋白相互作用,而不改变通道功能的其他特性。最近发现 CaM 与 Na+1.5 的一部分结合,该部分与通道失活具有高亲和力。仔细损害这种相互作用会破坏 Na+1.5 从失活中恢复的能力。这些结果支持 CaM 促进失活后恢复(CFRI)的范例。Na-CaM、CaMKII 和 FGF/成纤维细胞生长因子同源因子相互作用如何影响 CFRI 在心肌细胞中的时间或功能仍然是悬而未决的问题,本文对此进行了讨论。此外,CFRI 功能障碍或过早激活是否是某些 Na 通道病的基础,这是一个重要的问题,需要进一步研究。