Division of Cardiology, Department of Medicine, Duke University Medical Center, 2 Genome Ct, Durham, NC 27710, USA.
Structure. 2012 Jul 3;20(7):1167-76. doi: 10.1016/j.str.2012.05.001. Epub 2012 Jun 14.
Voltage-gated Na⁺ (Na(V)) channels initiate neuronal action potentials. Na(V) channels are composed of a transmembrane domain responsible for voltage-dependent Na⁺ conduction and a cytosolic C-terminal domain (CTD) that regulates channel function through interactions with many auxiliary proteins, including fibroblast growth factor homologous factors (FHFs) and calmodulin (CaM). Most ion channel structural studies have focused on mechanisms of permeation and voltage-dependent gating but less is known about how intracellular domains modulate channel function. Here we report the crystal structure of the ternary complex of a human Na(V) CTD, an FHF, and Ca²⁺-free CaM at 2.2 Å. Combined with functional experiments based on structural insights, we present a platform for understanding the roles of these auxiliary proteins in Na(V) channel regulation and the molecular basis of mutations that lead to neuronal and cardiac diseases. Furthermore, we identify a critical interaction that contributes to the specificity of individual Na(V) CTD isoforms for distinctive FHFs.
电压门控钠离子通道(Na(V))引发神经元动作电位。Na(V)通道由一个跨膜结构域组成,该结构域负责电压依赖性钠离子传导,以及一个胞质 C 末端结构域(CTD),该结构域通过与许多辅助蛋白相互作用来调节通道功能,包括成纤维细胞生长因子同源因子(FHFs)和钙调蛋白(CaM)。大多数离子通道结构研究都集中在渗透和电压依赖性门控的机制上,但对于细胞内结构域如何调节通道功能的了解较少。在这里,我们报告了一个人类 Na(V) CTD、一个 FHF 和无 Ca²⁺的 CaM 的三元复合物的晶体结构,分辨率为 2.2 Å。结合基于结构见解的功能实验,我们提出了一个理解这些辅助蛋白在 Na(V)通道调节中的作用以及导致神经元和心脏疾病的突变的分子基础的平台。此外,我们确定了一个关键的相互作用,该相互作用有助于每个 Na(V) CTD 亚型对独特的 FHF 的特异性。