Suppr超能文献

高糖基化人促黄体生成激素类似物的理性设计(一种生物信息学方法)。

Rational design of hyper-glycosylated human luteinizing hormone analogs (a bioinformatics approach).

机构信息

Dept. & Center for Biotechnology Research, Semnan University of Medical Sciences, Semnan, Iran; Students Research Committee, Semnan University of Medical Sciences, Semnan, Iran.

Dept. & Center for Biotechnology Research, Semnan University of Medical Sciences, Semnan, Iran.

出版信息

Comput Biol Chem. 2019 Apr;79:16-23. doi: 10.1016/j.compbiolchem.2019.01.002. Epub 2019 Jan 3.

Abstract

Glycoengineering is a recently used approach to extend serum half-life of valuable protein therapeutics. One aspect of glycoengineering is to introduce new N-glycosylation site (Asn-X-Thr/Ser, where X ≠ Pro) into desirable positions in the peptide backbone, resulting in the generation of hyper-glycosylated protein. In this study, human luteinizing hormone (LH) was considered for identification of the suitable positions for the addition of new N-linked glycosylation sites. A rational in silico approach was applied for prediction of structural and functional alterations caused by changes in amino acid sequence. As the first step, we explored the amino acid sequence of LH to find out desirable positions for introducing Asn or/and Thr to create new N-glycosylation sites. This exploration led to the identification of 38 potential N-glycan sites, and then the four acceptable ones were selected for further analysis. Three-dimensional (3D) structures of the selected analogs were generated and examined by the model evaluation methods. Finally, two analogs with one additional glycosylation site were suggested as the qualified analogs for hyper-glycosylation of the LH, which can be considered for further experimental investigations. Our computational strategy can reduce laborious and time-consuming experimental analyses of the analogs.

摘要

糖基工程是一种最近被用于延长有价值的蛋白质治疗药物血清半衰期的方法。糖基工程的一个方面是在肽主链的理想位置引入新的 N-糖基化位点(Asn-X-Thr/Ser,其中 X≠Pro),从而产生高糖基化的蛋白质。在这项研究中,人促黄体激素(LH)被认为是鉴定合适位置以添加新的 N 连接糖基化位点的候选蛋白。应用合理的计算方法预测氨基酸序列变化引起的结构和功能改变。作为第一步,我们探索了 LH 的氨基酸序列,以找出引入 Asn 和/或 Thr 以创建新的 N-糖基化位点的理想位置。这一探索确定了 38 个潜在的 N-聚糖位点,然后选择了四个可接受的位点进行进一步分析。通过模型评估方法生成并检查了所选类似物的三维(3D)结构。最后,建议两个具有一个额外糖基化位点的类似物作为 LH 高度糖基化的合格类似物,可进一步进行实验研究。我们的计算策略可以减少类似物繁琐和耗时的实验分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验