Institute for Mathematical Research, Universiti Putra Malaysia, 43400 Serdang, Malaysia.
Chaos. 2019 Jan;29(1):011103. doi: 10.1063/1.5079886.
In this paper, we investigate the dynamical behavior in an M-dimensional nonlinear hyperchaotic model (M-NHM), where the occurrence of multistability can be observed. Four types of coexisting attractors including single limit cycle, cluster of limit cycles, single hyperchaotic attractor, and cluster of hyperchaotic attractors can be found, which are unusual behaviors in discrete chaotic systems. Furthermore, the coexistence of asymmetric and symmetric properties can be distinguished for a given set of parameters. In the endeavor of chaotification, this work introduces a simple controller on the M-NHM, which can add one more loop in each iteration, to overcome the chaos degradation in the multistability regions.
在本文中,我们研究了一个 M 维非线性超混沌模型(M-NHM)中的动力学行为,其中可以观察到多稳定性的发生。可以发现四种共存吸引子,包括单个极限环、极限环簇、单个超混沌吸引子和超混沌吸引子簇,这在离散混沌系统中是不常见的行为。此外,对于给定的参数集,可以区分不对称和对称特性的共存。在混沌化的努力中,本工作在 M-NHM 上引入了一个简单的控制器,它可以在每个迭代中增加一个循环,以克服多稳定性区域中的混沌退化。