Liu Licai, Du Chuanhong, Zhang Xiefu, Li Jian, Shi Shuaishuai
School of Electronic and Information Engineering, Anshun University, Anshun 561000, China.
School of Mathematics and Computer Science, Guizhou Education University, Guiyang 550018, China.
Entropy (Basel). 2019 Mar 15;21(3):287. doi: 10.3390/e21030287.
This paper presents a new no-equilibrium 4-D hyperchaotic multistable system with coexisting hidden attractors. One prominent feature is that by varying the system parameter or initial value, the system can generate several nonlinear complex attractors: periodic, quasiperiodic, multiple topology chaotic, and hyperchaotic. The dynamics and complexity of the proposed system were investigated through Lyapunov exponents (LEs), a bifurcation diagram, a Poincaré map, and spectral entropy (SE). The simulation and calculation results show that the proposed multistable system has very rich and complex hidden dynamic characteristics. Additionally, the circuit of the chaotic system is designed to verify the physical realizability of the system. This study provides new insights into uncovering the dynamic characteristics of the coexisting hidden attractors system and provides a new choice for nonlinear control or chaotic secure communication technology.
本文提出了一种具有共存隐藏吸引子的新型非平衡四维超混沌多稳态系统。一个突出的特点是,通过改变系统参数或初始值,该系统可以生成几种非线性复杂吸引子:周期吸引子、准周期吸引子、多拓扑混沌吸引子和超混沌吸引子。通过李雅普诺夫指数(LEs)、分岔图、庞加莱映射和谱熵(SE)研究了所提出系统的动力学和复杂性。仿真和计算结果表明,所提出的多稳态系统具有非常丰富和复杂的隐藏动态特性。此外,设计了混沌系统电路以验证系统的物理可实现性。本研究为揭示共存隐藏吸引子系统的动态特性提供了新的见解,并为非线性控制或混沌安全通信技术提供了新的选择。