Suppr超能文献

量化 DFT 预测途径和电化学反应中决定活性的基本步骤的稳健性。

Quantifying robustness of DFT predicted pathways and activity determining elementary steps for electrochemical reactions.

机构信息

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.

出版信息

J Chem Phys. 2019 Jan 28;150(4):041717. doi: 10.1063/1.5056167.

Abstract

Density functional theory calculations are being routinely used to screen for new catalysts. Typically, this involves invoking scaling relations leading to the Sabatier-type volcano relationship for the catalytic activity, where each leg represents a unique potential determining an elementary step. The success of such screening efforts relies heavily not only on the prediction robustness of the activity determining step, but also on the choice of the descriptor. This becomes even more important as these methods are being applied to determine selectivity between a variety of possible reaction products. In this work, we develop a framework to quantify the confidence in the classification problem of identifying the potential determining step for material candidates and subsequently the pathway selectivity toward different reaction products. We define a quantity termed as the classification efficiency, which is a quantitative metric to rank descriptors on the basis of robustness of predictions for identifying selectivity toward different reaction products and the limiting step for the corresponding pathway. We demonstrate this approach for the reactions of oxygen reduction and oxygen evolution, and identify that ΔG is the optimal descriptor to classify between 2e and 4e oxygen reduction. We further show that ΔG and ΔG have comparable performance in identifying the limiting step for 4e oxygen reduction reaction. In the case of oxygen evolution, we study all possible 2 descriptor models and identify that {ΔG,ΔG } and {ΔG ,ΔG } both are highly efficient at classifying between 2e and 4e water oxidation. The presented methodology can directly be applied to other multi-electron electrochemical reactions such as CO and N reduction for improved mechanistic insights.

摘要

密度泛函理论计算被广泛用于筛选新型催化剂。通常,这涉及到调用标度关系,导致催化活性的 Sabatier 型火山关系,其中每条腿代表一个独特的潜在确定一个基本步骤。这种筛选工作的成功不仅依赖于活性决定步骤的预测稳健性,还依赖于描述符的选择。当这些方法被应用于确定各种可能的反应产物之间的选择性时,这一点变得更加重要。在这项工作中,我们开发了一个框架来量化识别候选材料中潜在决定步骤的分类问题的置信度,以及随后对不同反应产物的途径选择性。我们定义了一个称为分类效率的量,这是一种定量指标,可以根据对不同反应产物选择性的预测稳健性和相应途径的限制步骤对描述符进行排序。我们针对氧还原和氧析出反应进行了演示,确定 ΔG 是区分 2e 和 4e 氧还原的最佳描述符。我们进一步表明,ΔG 和 ΔG 在识别 4e 氧还原反应的限制步骤方面具有相当的性能。在氧析出反应的情况下,我们研究了所有可能的 2 描述符模型,并确定 {ΔG,ΔG} 和 {ΔG ,ΔG} 都可以高度有效地将 2e 和 4e 水氧化区分开来。所提出的方法可以直接应用于其他多电子电化学反应,如 CO 和 N 还原,以获得更好的机理见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验