Suppr超能文献

最优传输分析单细胞基因表达鉴定重编程中的发育轨迹。

Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming.

机构信息

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; MIT Center for Statistics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.

出版信息

Cell. 2019 Feb 7;176(4):928-943.e22. doi: 10.1016/j.cell.2019.01.006. Epub 2019 Jan 31.

Abstract

Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology.

摘要

理解指导发育过程中分化的分子程序是一个主要挑战。在这里,我们引入了 Waddington-OT,这是一种研究发育时间过程的方法,用于推断祖先-后代命运,并对其背后的调节程序进行建模。我们应用该方法从 315000 个单细胞 RNA 测序 (scRNA-seq) 图谱中重建了 18 天内每隔半天收集的重编程景观。结果显示了比以前更广泛的发育程序。细胞逐渐采用终末基质状态或间质到上皮过渡状态。后者产生与多能、胚胎外和神经细胞相关的群体,每个群体都有多个更精细的亚群。该分析预测了影响命运的转录因子和旁分泌信号,实验验证了 TF Obox6 和细胞因子 GDF9 可增强重编程效率。我们的方法揭示了重编程的过程和结果,并提供了一个适用于生物学中各种时间过程的框架。

相似文献

引用本文的文献

本文引用的文献

1
A comparison of single-cell trajectory inference methods.单细胞轨迹推断方法比较。
Nat Biotechnol. 2019 May;37(5):547-554. doi: 10.1038/s41587-019-0071-9. Epub 2019 Apr 1.
4
Single-Cell Transcriptomics Meets Lineage Tracing.单细胞转录组学与谱系追踪相遇。
Cell Stem Cell. 2018 Aug 2;23(2):166-179. doi: 10.1016/j.stem.2018.04.014. Epub 2018 May 10.
9
Fundamental limits on dynamic inference from single-cell snapshots.从单细胞快照中进行动态推断的基本限制。
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2467-E2476. doi: 10.1073/pnas.1714723115. Epub 2018 Feb 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验