Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; MIT Center for Statistics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
Cell. 2019 Feb 7;176(4):928-943.e22. doi: 10.1016/j.cell.2019.01.006. Epub 2019 Jan 31.
Understanding the molecular programs that guide differentiation during development is a major challenge. Here, we introduce Waddington-OT, an approach for studying developmental time courses to infer ancestor-descendant fates and model the regulatory programs that underlie them. We apply the method to reconstruct the landscape of reprogramming from 315,000 single-cell RNA sequencing (scRNA-seq) profiles, collected at half-day intervals across 18 days. The results reveal a wider range of developmental programs than previously characterized. Cells gradually adopt either a terminal stromal state or a mesenchymal-to-epithelial transition state. The latter gives rise to populations related to pluripotent, extra-embryonic, and neural cells, with each harboring multiple finer subpopulations. The analysis predicts transcription factors and paracrine signals that affect fates and experiments validate that the TF Obox6 and the cytokine GDF9 enhance reprogramming efficiency. Our approach sheds light on the process and outcome of reprogramming and provides a framework applicable to diverse temporal processes in biology.
理解指导发育过程中分化的分子程序是一个主要挑战。在这里,我们引入了 Waddington-OT,这是一种研究发育时间过程的方法,用于推断祖先-后代命运,并对其背后的调节程序进行建模。我们应用该方法从 315000 个单细胞 RNA 测序 (scRNA-seq) 图谱中重建了 18 天内每隔半天收集的重编程景观。结果显示了比以前更广泛的发育程序。细胞逐渐采用终末基质状态或间质到上皮过渡状态。后者产生与多能、胚胎外和神经细胞相关的群体,每个群体都有多个更精细的亚群。该分析预测了影响命运的转录因子和旁分泌信号,实验验证了 TF Obox6 和细胞因子 GDF9 可增强重编程效率。我们的方法揭示了重编程的过程和结果,并提供了一个适用于生物学中各种时间过程的框架。