GNODEVAE:一种基于图的常微分方程变分自编码器增强了单细胞数据的聚类效果。
GNODEVAE: a graph-based ODE-VAE enhances clustering for single-cell data.
作者信息
Fu Zeyu, Chen Chunlin, Wang Song, Wang Junping, Chen Shilei
机构信息
State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
出版信息
BMC Genomics. 2025 Aug 21;26(1):767. doi: 10.1186/s12864-025-11946-7.
BACKGROUND
Single-cell RNA sequencing analysis faces critical challenges including high dimensionality, sparsity, and complex topological relationships between cells. Current methods struggle to simultaneously preserve global structure, model cellular dynamics, and handle technical noise effectively.
RESULTS
We present GNODEVAE, a novel architecture integrating Graph Attention Networks (GAT), Neural Ordinary Differential Equations (NODE), and Variational Autoencoders (VAE) for comprehensive single-cell analysis. Through systematic evaluation across 10 graph convolutional layers, GAT demonstrated optimal performance, achieving average ARI advantages of 0.108 and 0.112 over alternative graph convolutional layers in VGAE and GNODEVAE architectures respectively, along with ASW advantages of 0.047 and 0.098. Extensive comparison across 50 diverse single cell datasets against 18 existing methods demonstrates that GNODEVAE consistently outperforms three major categories of benchmark methods: 8 machine learning dimensionality reduction techniques, 7 deep generative VAE variants, and 3 graph-based and contrastive learning deep predictive models. GNODEVAE achieved average advantages of 0.112 in reconstruction clustering quality (ARI) and 0.113 in clustering geometry quality (ASW) over standard VGAE, with an average ASW advantage of 0.286 over all benchmark methods in clustering geometry quality. In gene dynamics clustering evaluation, GNODEVAE outperformed Diffusion map and Palantir methods across all geometric metrics.
CONCLUSIONS
GNODEVAE establishes a robust computational framework that synergistically combines neighborhood-awareness, dynamic modeling, and probabilistic expressiveness for single-cell multi-omics analysis. The consistent superior performance across diverse datasets demonstrates its effectiveness as a versatile tool for cell clustering, dimensionality reduction, and pseudotime trajectory analysis in both scRNA-seq and scATAC-seq data mining.
背景
单细胞RNA测序分析面临着包括高维度、稀疏性以及细胞间复杂拓扑关系等关键挑战。当前方法难以同时保留全局结构、模拟细胞动态变化并有效处理技术噪声。
结果
我们提出了GNODEVAE,这是一种集成了图注意力网络(GAT)、神经常微分方程(NODE)和变分自编码器(VAE)的新型架构,用于全面的单细胞分析。通过对10个图卷积层的系统评估,GAT展示了最优性能,在VGAE和GNODEVAE架构中,相对于其他图卷积层,其平均ARI优势分别为0.108和0.112,同时ASW优势分别为0.047和0.098。在50个不同的单细胞数据集上与18种现有方法进行的广泛比较表明,GNODEVAE始终优于三大类基准方法:8种机器学习降维技术、7种深度生成VAE变体以及3种基于图和对比学习的深度预测模型。相较于标准VGAE,GNODEVAE在重建聚类质量(ARI)方面平均优势为0.112,在聚类几何质量(ASW)方面平均优势为0.113,在聚类几何质量方面相对于所有基准方法平均ASW优势为0.286。在基因动态聚类评估中,GNODEVAE在所有几何指标上均优于扩散映射和Palantir方法。
结论
GNODEVAE建立了一个强大的计算框架,该框架将邻域感知、动态建模和概率表达能力协同结合用于单细胞多组学分析。在不同数据集上始终表现出的卓越性能证明了它作为一种通用工具在scRNA-seq和scATAC-seq数据挖掘中的细胞聚类、降维和伪时间轨迹分析方面的有效性。