Suppr超能文献

美国泽西奶牛公牛生育力的基因组预测。

Genomic prediction of bull fertility in US Jersey dairy cattle.

机构信息

Department of Animal Sciences, University of Florida, Gainesville 32611; Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia MG 38410-337, Brazil.

Department of Animal Sciences, University of Florida, Gainesville 32611; Estación Experimental Agropecuaria Rafaela, Instituto Nacional de Tecnología Agropecuaria, Rafaela SF 22-2300, Argentina.

出版信息

J Dairy Sci. 2019 Apr;102(4):3230-3240. doi: 10.3168/jds.2018-15810. Epub 2019 Feb 1.

Abstract

Service sire has a major effect on reproductive success in dairy cattle. Recent studies have reported accurate predictions for Holstein bull fertility using genomic data. The objective of this study was to assess the feasibility of genomic prediction of sire conception rate (SCR) in US Jersey cattle using alternative predictive models. Data set consisted of 1.5k Jersey bulls with SCR records and 95k SNP covering the entire genome. The analyses included the use of linear and Gaussian kernel-based models fitting either all the SNP or subsets of markers with presumed functional roles, such as SNP significantly associated with SCR or SNP located within or close to annotated genes. Model predictive ability was evaluated using 5-fold cross-validation with 10 replicates. The entire SNP set exhibited predictive correlations around 0.30. Interestingly, either SNP marginally associated with SCR or genic SNP achieved higher predictive abilities than their counterparts using random sets of SNP. Among alternative SNP subsets, Gaussian kernel models fitting significant SNP achieved the best performance with increases in predictive correlation up to 7% compared with the standard whole-genome approach. Notably, the use of a multi-breed reference population including the entire US Holstein SCR data set (11.5k bulls) allowed us to achieve predictive correlations up to 0.315, gaining 8% in accuracy compared with the standard model fitting a pure Jersey reference set. Overall, our findings indicate that genomic prediction of Jersey bull fertility is feasible. The use of Gaussian kernels fitting markers with relevant roles and the inclusion of Holstein records in the training set seem to be promising alternatives to the standard whole-genome approach. These results have the potential to help the dairy industry improve US Jersey sire fertility through accurate genome-guided decisions.

摘要

服务 sire 对奶牛的繁殖成功有重大影响。最近的研究报告称,使用基因组数据可以准确预测荷斯坦公牛的生育能力。本研究的目的是评估使用替代预测模型对美国泽西牛 sire 受孕率 (SCR) 进行基因组预测的可行性。数据集由 1500 头具有 SCR 记录的泽西公牛和 95000 个 SNP 组成,涵盖整个基因组。分析包括使用线性和高斯核模型,拟合所有 SNP 或具有假定功能作用的 SNP 子集,例如与 SCR 显著相关的 SNP 或位于注释基因内或附近的 SNP。使用 5 折交叉验证和 10 个重复评估模型的预测能力。整个 SNP 集的预测相关性约为 0.30。有趣的是,与 SCR 边缘相关的 SNP 或基因 SNP 的预测能力都高于使用随机 SNP 集的 SNP。在替代 SNP 子集中,拟合显著 SNP 的高斯核模型表现最好,与标准全基因组方法相比,预测相关性提高了 7%。值得注意的是,使用包括整个美国荷斯坦 SCR 数据集(11500 头公牛)的多品种参考群体,我们能够实现高达 0.315 的预测相关性,与拟合纯泽西参考集的标准模型相比,准确性提高了 8%。总体而言,我们的研究结果表明,对泽西公牛生育能力进行基因组预测是可行的。使用具有相关作用的高斯核拟合标记和在训练集中包含荷斯坦记录似乎是标准全基因组方法的有前途的替代方法。这些结果有可能通过准确的基因组指导决策来帮助奶牛业提高美国泽西 sire 的生育能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验