Lu Grace, Haes Amanda J, Forbes Tori Z
Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States.
Coord Chem Rev. 2018 Nov 1;374:314-344. doi: 10.1016/j.ccr.2018.07.010. Epub 2018 Jul 31.
The purpose of this review is to provide an overview of uranium speciation using vibrational spectroscopy methods including Raman and IR. Uranium is a naturally occurring, radioactive element that is utilized in the nuclear energy and national security sectors. Fundamental uranium chemistry is also an active area of investigation due to ongoing questions regarding the participation of 5 orbitals in bonding, variation in oxidation states and coordination environments, and unique chemical and physical properties. Importantly, uranium speciation affects fate and transportation in the environment, influences bioavailability and toxicity to human health, controls separation processes for nuclear waste, and impacts isotopic partitioning and geochronological dating. This review article provides a thorough discussion of the vibrational modes for U(IV), U(V), and U(VI) and applications of infrared absorption and Raman scattering spectroscopies in the identification and detection of both naturally occurring and synthetic uranium species in solid and solution states. The vibrational frequencies of the uranyl moiety, including both symmetric and asymmetric stretches are sensitive to the coordinating ligands and used to identify individual species in water, organic solvents, and ionic liquids or on the surface of materials. Additionally, vibrational spectroscopy allows for the detection and real-time monitoring of chemical reactions involving uranium. Finally, techniques to enhance uranium species signals with vibrational modes are discussed to expand the application of vibrational spectroscopy to biological, environmental, inorganic, and materials scientists and engineers.
本综述的目的是概述使用拉曼光谱和红外光谱等振动光谱方法进行的铀形态分析。铀是一种天然存在的放射性元素,在核能和国家安全领域有应用。由于5轨道参与键合、氧化态和配位环境的变化以及独特的化学和物理性质等问题仍存在争议,铀的基础化学也是一个活跃的研究领域。重要的是,铀的形态会影响其在环境中的归宿和迁移,影响对人类健康的生物可利用性和毒性,控制核废料的分离过程,并影响同位素分配和地质年代测定。本文综述了U(IV)、U(V)和U(VI)的振动模式,以及红外吸收光谱和拉曼散射光谱在鉴定和检测固态及溶液态天然和合成铀物种中的应用。铀酰部分的振动频率,包括对称和不对称伸缩振动,对配位配体敏感,可用于识别水、有机溶剂、离子液体中或材料表面的单个物种。此外,振动光谱还可用于检测和实时监测涉及铀的化学反应。最后,讨论了利用振动模式增强铀物种信号的技术,以扩大振动光谱在生物、环境、无机和材料科学家及工程师中的应用。