State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China.
School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, 114051, P. R. China.
Small. 2019 Aug;15(32):e1804770. doi: 10.1002/smll.201804770. Epub 2019 Feb 4.
The effective synthesis of chiral compounds in a highly enantioselective manner is obviously attractive. Inspired by the enzymatic reactions that occur in pocket-like cavities with high efficiency and specificity, chemists are seeking to construct catalysts that mimic this key feature of enzymes. Recent progress in supramolecular coordination chemistry has shown that metal-organic cages (MOCs) and metal-organic frameworks (MOFs) with chiral confined cavities/pores may offer a novel platform for achieving asymmetric catalysis with high enantioselectivity. The inherent chiral confined microenvironment is considered to be analogous to the binding pocket of enzymes, and this pocket promotes enantioselective transformations. This work focuses on the recent advances in MOCs and MOFs with chiral confined spaces for asymmetric catalysis, and each section is separated into two parts based on how the chirality is achieved in these metal-organic architectures. A special emphasis is placed on discussing the relationship between the enantioselectivity and the confined spaces of the chiral functional MOCs and MOFs rather than catalytic chemistry. Finally, current challenges and perspectives are discussed. This work is anticipated to offer researchers insights into the design of sophisticated chiral confined space-based metal-organic architectures for asymmetric catalysis with high enantioselectivity.
高效和高选择性地合成手性化合物显然具有吸引力。受发生在具有高效率和特异性的口袋状腔体内的酶促反应的启发,化学家们正在寻求构建模拟酶的这种关键特性的催化剂。超分子配位化学的最新进展表明,具有手性受限腔/孔的金属-有机笼(MOC)和金属-有机框架(MOF)可能为实现高对映选择性的不对称催化提供一个新的平台。固有手性受限微环境被认为类似于酶的结合口袋,而这个口袋促进了对映选择性的转变。这项工作主要关注具有手性受限空间的 MOC 和 MOF 在不对称催化中的最新进展,每个部分都根据在这些金属有机结构中实现手性的方式分为两部分。特别强调讨论手性功能 MOC 和 MOF 的受限空间与对映选择性之间的关系,而不是催化化学。最后,讨论了当前的挑战和展望。这项工作有望为研究人员提供设计基于复杂手性受限空间的金属有机架构以实现高对映选择性不对称催化的思路。