School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
Acc Chem Res. 2021 Jan 5;54(1):194-206. doi: 10.1021/acs.accounts.0c00604. Epub 2020 Dec 18.
Chirality is a pervasive structural feature of nature and crucial to the organization and function of nearly all biological systems. At the molecular level, the biased availability of enantiomers in nucleic and amino acids forms the basis for asymmetry. However, chirality expression in natural systems remains complex and intriguing across differing length scales. The translation of chirality toward synthetic systems therefore not only is crucial for fundamental understanding but also may address key challenges in biochemistry and pharmacology. From a structural viewpoint, a fascinating class of cavity-containing supramolecular assemblies, homochiral metal-organic complexes (MOCs), provides a good opportunity to study enantioselective processes. Chiral MOCs are constructed by coordination-driven self-assembly, wherein relatively simple molecular precursors are allowed to assemble into structurally well-defined two-dimensional (2D) metallacycles or 3D metallacages spontaneously with complex and varied functions. These aesthetically appealing structures present nanocavities with space-restricted chiral microenvironments capable of interacting distinctly with molecularly asymmetric guests, which is highly beneficial to explore the relay of chiral information from locally chiral molecules to globally chiral supramolecules, which is a significant challenge.In this Account, we specifically discuss our research toward rationally designed, synthetically accessible chiral MOCs over the past 12 years. The globally supramolecular chirality demonstrated by these well-defined MOCs prominently exceeds the constitutive molecular chirality of the components. First, we discuss chirality transfer and amplification in the context of induction and transmission from the constituent organic ligands of self-assembled chiral metallacycles. The creation of subtly chiral microenvironments in the metallacyclic architectures results from a tiny conformational bias of inner hydrophobic groups, subsequently allowing them to interact very specifically with one enantiomer over the other, thus imparting outstanding enantioseparation properties. Second, we have designed a series of chiral metallacycles and helical metallacages that are able to deploy chiral NH groups with available hydrogen bonding capacity, together with hydrophobic/CH-π interactions, bringing about cooperativity for binding of chiral substrates. It turns out that they can be used as artificial chiral receptors capable of exceptionally high enantiorecognition toward a wide range of biologically relevant molecules. Third, we recently developed a group of highly stable chiral metallacages that feature a catalytically confined nanospace with potential as supramolecular asymmetric catalysts. It has been suggested that the use of molecularly nanocaged chiral hosts in solution to substantially increase reactivity and enantioselectivity compared with the unconfined reactions, highlighting the intermetallic synergy, rationalizes the remarkable catalytic performance. Finally, we discuss our personal perspectives on the promises, opportunities, and key issues toward the future development of chiral MOCs. Needless to say that the fundamental understanding of the translation of chirality from molecular to supramolecular to macroscopic scales is crucial to unveil biological mechanisms. We hope the described supramolecular chirality of MOCs could be extendable to develop new and valuable chiral materials in chemistry, medicine, and beyond.
手性是自然界普遍存在的结构特征,对几乎所有生物系统的组织和功能都至关重要。在分子水平上,手性分子在核酸和氨基酸中的不对称可用性构成了不对称性的基础。然而,在不同的长度尺度上,自然系统中手性的表达仍然复杂而有趣。因此,手性向合成系统的转化不仅对基础理解至关重要,而且可能解决生物化学和药理学中的关键挑战。从结构的角度来看,一类引人入胜的包含空腔的超分子组装体,同手性金属有机配合物(MOC),为研究对映选择性过程提供了很好的机会。MOC 通过配位驱动的自组装构建,其中相对简单的分子前体被允许自发组装成结构明确的二维(2D)金属环或 3D 金属笼,具有复杂多样的功能。这些具有吸引力的结构呈现出纳米腔,具有空间受限的手性微环境,能够与分子不对称客体进行独特的相互作用,这非常有利于探索手性信息从局部手性分子到全局手性超分子的传递,这是一个重大挑战。在本报告中,我们特别讨论了我们在过去 12 年中对合理设计、可合成的同手性 MOC 的研究。这些明确定义的 MOC 表现出的全局超分子手性明显超过了组成分子的固有手性。首先,我们讨论了在手性金属环自组装过程中,从组成有机配体的诱导和传递角度看手性的传递和放大。金属环结构中细微手性微环境的产生源于内部疏水分子的微小构象偏差,随后允许它们与另一个手性分子非常特异性地相互作用,从而赋予其出色的对映体分离性能。其次,我们设计了一系列能够利用具有可用氢键结合能力的手性 NH 基团和疏水性/CH-π 相互作用的手性金属环和螺旋金属笼,从而产生对手性底物的协同结合。事实证明,它们可用作人工手性受体,能够对广泛的生物相关分子进行极高的对映体识别。第三,我们最近开发了一组高度稳定的手性金属笼,其特征是具有潜在催化受限纳米空间的金属笼,可用作超分子不对称催化剂。有人提出,在溶液中使用分子纳米笼状手性主体可以显著提高反应性和对映选择性,与无约束反应相比,这突出了金属间协同作用,合理地解释了其出色的催化性能。最后,我们讨论了我们对未来同手性 MOC 发展的前景、机会和关键问题的个人看法。不言而喻,从分子到超分子到宏观尺度的手性转化的基本理解对于揭示生物机制至关重要。我们希望 MOC 的这种超分子手性可以扩展到化学、医学和其他领域开发新的和有价值的手性材料。