Suppr超能文献

卷积稀疏表示中用于字典学习的自适应交替方向乘子法

Adaptive ADMM for Dictionary Learning in Convolutional Sparse Representation.

作者信息

Peng Guan-Ju

出版信息

IEEE Trans Image Process. 2019 Jul;28(7):3408-3422. doi: 10.1109/TIP.2019.2896541. Epub 2019 Jan 31.

Abstract

In this paper, we propose a novel approach to convolutional sparse representation with the aim of resolving the dictionary learning problem. The proposed method, referred to as the adaptive alternating direction method of multipliers (AADMM), employs constraints comprising non-convex, non-smooth terms, such as the l -norm imposed on the coefficients and the unit-norm sphere imposed on the length of each dictionary element. The proposed scheme incorporates a novel parameter adaption scheme that enables ADMM to achieve convergence more quickly, as evidenced by numerical and theoretical analysis. In experiments involving image signal applications, the dictionaries learned using AADMM outperformed those learned using comparable dictionary learning methods.

摘要

在本文中,我们提出了一种用于卷积稀疏表示的新方法,旨在解决字典学习问题。所提出的方法称为自适应交替方向乘子法(AADMM),它采用了包含非凸、非光滑项的约束,例如施加在系数上的l -范数以及施加在每个字典元素长度上的单位范数球。所提出的方案纳入了一种新颖的参数自适应方案,该方案使ADMM能够更快地实现收敛,数值和理论分析证明了这一点。在涉及图像信号应用的实验中,使用AADMM学习得到的字典优于使用可比字典学习方法学习得到的字典。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验