Peng Guan-Ju
IEEE Trans Neural Netw Learn Syst. 2020 Feb;31(2):559-573. doi: 10.1109/TNNLS.2019.2906074. Epub 2019 Apr 19.
Convolutional sparse coding (CSC) is a useful tool in many image and audio applications. Maximizing the performance of CSC requires that the dictionary used to store the features of signals can be learned from real data. The so-called convolutional dictionary learning (CDL) problem is formulated within a nonconvex, nonsmooth optimization framework. Most existing CDL solvers alternately update the coefficients and dictionary in an iterative manner. However, these approaches are prone to running redundant iterations, and their convergence properties are difficult to analyze. Moreover, most of those methods approximate the original nonconvex sparse inducing function using a convex regularizer to promote computational efficiency. This approach to approximation may result in nonsparse representations and, thereby, hinder the performance of the applications. In this paper, we deal with the nonconvex, nonsmooth constraints of the original CDL directly using the modified forward-backward splitting approach, in which the coefficients and dictionary are simultaneously updated in each iteration. We also propose a novel parameter adaption scheme to increase the speed of the algorithm used to obtain a usable dictionary and in so doing prove convergence. We also show that the proposed approach is applicable to parallel processing to reduce the computing time required by the algorithm to achieve convergence. The experimental results demonstrate that our method requires less time than the existing methods to achieve the convergence point while using a smaller final functional value. We also applied the dictionaries learned using the proposed and existing methods to an application involving signal separation. The dictionary learned using the proposed approach provides performance superior to that of comparable methods.
卷积稀疏编码(CSC)在许多图像和音频应用中是一种有用的工具。要使CSC的性能最大化,就要求用于存储信号特征的字典能够从真实数据中学习得到。所谓的卷积字典学习(CDL)问题是在一个非凸、非光滑的优化框架内提出的。大多数现有的CDL求解器以迭代方式交替更新系数和字典。然而,这些方法容易进行冗余迭代,并且它们的收敛特性难以分析。此外,这些方法中的大多数使用凸正则化器来近似原始的非凸稀疏诱导函数,以提高计算效率。这种近似方法可能会导致非稀疏表示,从而阻碍应用的性能。在本文中,我们直接使用改进的前向-后向分裂方法来处理原始CDL的非凸、非光滑约束,在每次迭代中同时更新系数和字典。我们还提出了一种新颖的参数自适应方案,以提高用于获得可用字典的算法的速度,并证明其收敛性。我们还表明,所提出的方法适用于并行处理,以减少算法达到收敛所需的计算时间。实验结果表明,我们的方法在达到收敛点时比现有方法所需的时间更少,同时使用的最终函数值更小。我们还将使用所提出的方法和现有方法学习得到的字典应用于一个涉及信号分离的应用中。使用所提出的方法学习得到的字典提供了优于可比方法的性能。