Suppr超能文献

卷积字典学习:加速与收敛。

Convolutional Dictionary Learning: Acceleration and Convergence.

出版信息

IEEE Trans Image Process. 2018 Apr;27(4):1697-1712. doi: 10.1109/TIP.2017.2761545. Epub 2017 Oct 9.

Abstract

Convolutional dictionary learning (CDL or sparsifying CDL) has many applications in image processing and computer vision. There has been growing interest in developing efficient algorithms for CDL, mostly relying on the augmented Lagrangian (AL) method or the variant alternating direction method of multipliers (ADMM). When their parameters are properly tuned, AL methods have shown fast convergence in CDL. However, the parameter tuning process is not trivial due to its data dependence and, in practice, the convergence of AL methods depends on the AL parameters for nonconvex CDL problems. To moderate these problems, this paper proposes a new practically feasible and convergent Block Proximal Gradient method using a Majorizer (BPG-M) for CDL. The BPG-M-based CDL is investigated with different block updating schemes and majorization matrix designs, and further accelerated by incorporating some momentum coefficient formulas and restarting techniques. All of the methods investigated incorporate a boundary artifacts removal (or, more generally, sampling) operator in the learning model. Numerical experiments show that, without needing any parameter tuning process, the proposed BPG-M approach converges more stably to desirable solutions of lower objective values than the existing state-of-the-art ADMM algorithm and its memory-efficient variant do. Compared with the ADMM approaches, the BPG-M method using a multi-block updating scheme is particularly useful in single-threaded CDL algorithm handling large data sets, due to its lower memory requirement and no polynomial computational complexity. Image denoising experiments show that, for relatively strong additive white Gaussian noise, the filters learned by BPG-M-based CDL outperform those trained by the ADMM approach.

摘要

卷积字典学习(CDL 或稀疏化 CDL)在图像处理和计算机视觉中有许多应用。人们越来越感兴趣的是开发用于 CDL 的高效算法,这些算法主要依赖于增广拉格朗日(AL)方法或交替方向乘子法(ADMM)的变体。当它们的参数被正确调整时,AL 方法在 CDL 中显示出快速收敛。然而,由于其数据依赖性,参数调整过程并不简单,在实践中,AL 方法的收敛取决于非凸 CDL 问题的 AL 参数。为了缓解这些问题,本文提出了一种新的实用可行的基于块近端梯度的方法(BPG-M),用于 CDL。对基于 BPG-M 的 CDL 进行了不同的块更新方案和最大化矩阵设计的研究,并通过引入一些动量系数公式和重新启动技术进一步加速。所研究的所有方法都在学习模型中包含了边界伪影去除(或更一般地说,采样)算子。数值实验表明,在不需要任何参数调整过程的情况下,所提出的 BPG-M 方法比现有的最先进的 ADMM 算法及其内存高效变体更稳定地收敛到具有较低目标值的理想解。与 ADMM 方法相比,使用多块更新方案的 BPG-M 方法在处理大型数据集的单线程 CDL 算法中特别有用,因为它的内存需求较低,且计算复杂度不是多项式级的。图像去噪实验表明,对于相对较强的加性白高斯噪声,BPG-M 基于 CDL 学习的滤波器优于 ADMM 方法训练的滤波器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验