Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
Nanoscale. 2019 Feb 14;11(7):3138-3144. doi: 10.1039/c8nr09731c.
Plasmonic metal nanostructures with complex morphologies provide an important route to tunable optical responses and local electric field enhancement at the nanoscale for a variety of applications including sensing, imaging, and catalysis. Here we report a high-concentration synthesis of gold core-cage nanoparticles with a tethered and structurally aligned octahedral core and examine their plasmonic and catalytic properties. The obtained nanostructures exhibit a double band extinction in the visible-near infrared range and a large area electric field enhancement due to the unique structural features, as demonstrated using finite difference time domain (FDTD) simulations and confirmed experimentally using surface enhanced Raman scattering (SERS) tests. In addition, the obtained structures had a photoelectrochemical response useful for catalyzing the CO2 electroreduction reaction. Our work demonstrates the next generation of complex plasmonic nanostructures attainable via bottom-up synthesis and offers a variety of potential applications ranging from sensing to catalysis.
具有复杂形态的等离子体金属纳米结构为各种应用提供了一种重要途径,可在纳米尺度上实现可调谐的光学响应和局域电场增强,包括传感、成像和催化。在这里,我们报告了一种高浓度合成具有连接和结构排列的八面体核的金核笼状纳米粒子,并研究了它们的等离子体和催化性质。所得到的纳米结构在可见光-近红外范围内表现出双带消光,并且由于独特的结构特征,在有限差分时间域 (FDTD) 模拟中得到了证明,并通过表面增强拉曼散射 (SERS) 测试得到了实验证实,存在大面积的电场增强。此外,所得到的结构具有用于催化 CO2 电还原反应的光电化学响应。我们的工作展示了通过自下而上合成获得的新一代复杂等离子体纳米结构,并提供了从传感到催化等各种潜在应用。